平行四邊形教案3篇
在教學工作者實際的教學活動中,編寫教案是必不可少的,教案有利于教學水平的提高,有助于教研活動的開展?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編幫大家整理的平行四邊形教案3篇,歡迎大家借鑒與參考,希望對大家有所幫助。
平行四邊形教案 篇1
1、本單元教材內容
例1.認識同一平面內兩條直線的特殊位置關系:平行和垂直。
例2.學習畫垂線,認識點到直線的距離。
例3.學習畫平行線,理解平行線之間的距離處處相等。
例1.把四邊形分類,概括出平行四邊形和梯形的.特征,探討平行四邊形和長方形、正方形的關系。
例2.認識平行四邊形的不穩(wěn)定性,認識平行四邊形的底和高,學習畫高,梯形的各部分名稱。
2、重難點、關鍵
重點:垂直與平行的概念;平行四邊形和梯形的特征。
難點:畫垂線、畫平行線、畫長方形和正方形、畫平行四邊形和梯形的高。
關鍵:加強作圖的訓練和指導,重視作圖能力的培養(yǎng)。
3、教學目標
。1)使學生理解垂直與平行的概念,會用直尺、三角尺畫垂線和平行線。
(2)使學生掌握平行四邊形和梯形的特征。
(3)通過多種活動使學生逐步形成空間觀念,進一步體會幾何圖形在日常生活中的廣泛應用。
4、課時劃分
6課時
(1)垂直與平行 3課時左右
。2)平行四邊形和梯形 3課時左右
平行四邊形教案 篇2
教學內容:國標蘇教版數學第八冊P43-45。
教學目標:
1、同學在聯(lián)系生活實際和動手操作的過程中認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認識平行四邊形的高。
2、同學在活動中進一步積累認識圖形的學習經驗,學會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能丈量或畫出平行四邊形的高。
3、同學感受圖形與生活的聯(lián)系,感受平面圖形的學習價值,進一步發(fā)展對“空間與圖形”的學習興趣。
教學重點:進一步認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。
教學難點:引導同學發(fā)現(xiàn)平行四邊形的特征。
教學準備:配套多媒體課件。
教學過程:
一、生活導入。
1、(課件出示學校大門關閉和打開的錄象,最后定格成放大的圖片)教師談話:同學們每天都要經過校門進入學校,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據回答,教師板書:平行四邊形。
2、你們還能找出我們生活中見過的一些平行四邊形嗎?同學回答后,教師課件出示一些生活中的平行四邊形:如活動衣架、風箏、樓梯欄桿等。
3、今天這節(jié)課我們一起來進一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認識平行四邊形。
。墼u:《數學課程規(guī)范》指出:“同學的數學學習內容應當是實際的、有意義的、富有挑戰(zhàn)性的!边x擇同學熟悉和感興趣的素材,吸引同學的注意力,激發(fā)同學主動參與學習活動的熱情,讓同學初步感知平行四邊形。]
二、探究特點。
1、剛才同學們已經能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自身來想方法來制作一個平行四邊形呢?你們可以先看一看資料袋中有哪些資料,再獨立考慮一下準備怎么做;假如有困難的可以先看看學具袋中的平行四邊形再操作。
2、大家已經完成了自身的創(chuàng)作,現(xiàn)在請你們和小組的同學交流一下,說說自身的做法和為什么這樣做,然后派代表上來交流。
同學小組交流,教師巡視,并進行一定的輔導。
3、哪個小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的理由,其他小組等他們說完后可以進行補充。
(1)方法一:用小棒擺。請你說說你為什么這么做?要注意些什么呢?
(2)方法二:在釘子板上面圍一個平行四邊形。你介紹一下,在圍的時候要注意些什么?怎樣才干做一個平行四邊形?
(3)方法三:在方格紙上畫一個平行四邊形。你能提醒一下大家嗎?應該怎樣才干得到一個平行四邊形?
(4)用直尺畫一個平行四邊形。
……
(評:這個個環(huán)節(jié)的設計,本著同學為主體的思想,敢于放手,讓同學的多種感官參與學習活動,讓同學在操作中體驗平行四邊形的一些特點;既實現(xiàn)了探究過程開放性,也突出了師生之間、同學之間的多向交流,體現(xiàn)那了同學為本的理念。)
4、剛才我們已經能用多種方法來制作平行四邊形,現(xiàn)在請大家在方格紙上獨立在方格紙上畫一個平行四邊形,想想應該怎么畫?注意些什么?
(評:本環(huán)節(jié)的設計,通過在方格紙上畫,讓同學再次感知平行四邊形的一些特點,為下面的猜測、驗證和畫高作了鋪墊。)
5、我們已經能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個平行四邊形。那么這些大小不同的平行四邊形到底有什么一起特點呢?下面我們一起來研究。
根據你們在制作平行四邊形的時候的體會,你們可以猜測一下:平行四邊形有哪些特點?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜測它的特征呢?邊?角?)
6、同學小組討論后提問并板書猜測:
對邊可能平行;
對邊可能相等;
對角相等;
……
7、你們真行,有了這么多的猜測,那我們能夠自身想方法來證明這些猜測是否正確呢?請每個小組先認領一條,時間有多余可以再研究其他的猜測。
同學每小組上臺認領一條猜測,同學分組驗證猜測。
8、經過同學們的努力,我們已經自身驗證了其中一條猜測,現(xiàn)在我們舊來交流一下,其他小組認真聽好,他們的回答是否正確,你覺得怎樣?
9、小組派代表上來交流自身小組的驗證方法,其他小組在其完成后進行評價。
(1) 兩組對邊分別相等:同學介紹可以用對折或用直尺量的.方法來驗證對邊相等后,教師用課件直觀展示。
(2) 兩組對邊分別平行:同學匯報的時候假如不一定很完整,教師用課件展示:兩條對邊分別延伸,然后顯示不相交。
(3) 對角相等:同學說出方法后,教師讓同學再自身量一量。
……
最后,教師板書出經過驗證特點:
兩組對邊分別平行并且相等;
對角相等;
內角和是360°
(評:這個環(huán)節(jié)的設計蘊涵了“猜測-驗證-結論”這樣一個科學的探究方法。給同學提供了充沛的自制探索的空間,引導同學先猜想特點,再放手讓同學自身去驗證和交流,使同學在碰撞和交流中最后的出結論。在這個過程中,同學充沛展示了自身的思維過程,在交流中與傾聽中把自身的方法與他人的想法進行了比較。)
10、完成“想想做做1”。同學獨立完成后說說理由。
三、認識高、底。
1、出示一張平行四邊形的圖,介紹:這是一個平行四邊形,你能量出平行四邊形兩條紅線間的距離嗎?應該怎么量?把你量的線段畫出來。
同學自身嘗試后交流。
2、老師剛才發(fā)現(xiàn),大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數條。)
說明:從平行四邊形一條邊上的一點到它對邊的垂直線段是平行四邊形的高,這條對邊是平行四邊形的底。
3、你能畫出另一組對邊上的高,并量一量嗎?同學繼續(xù)嘗試。
完成后,讓同學指一指:兩次畫的高分別垂直于哪一組對邊。板書:高和一組對邊對應。
4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。
5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標志。假如有錯誤,讓同學說說錯在哪里。
(這個環(huán)節(jié)的設計,通過同學自身去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對應的時候比較巧妙,同學學得輕松、明了。設計的練習也遵循循序漸進的原則,很好地讓同學領悟了高的知識。)
四、練習提高。
1、想想做做1,哪些圖形是平行四邊形,為什么。
2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。
3、想想做做3,用七巧板中的3塊拼成一個平行四邊形。
出示,你能移動其中的一塊將它改拼生長方形嗎?
4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙試一試。
5、想想做做6,用飲料管作成一個長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點和不同點。
(評:在鞏固練習中,注意通過同學動手、動腦來進一步掌握平行四邊形的特點。來年系的層次清楚、逐步提高,同學容易接受,并且注意了引導同學去自主探索、合作交流。)
五、閱讀調查
自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。
六、全課小結
今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進行研究?
平行四邊形教案 篇3
教學過程
一、課堂引入
1.平行四邊形的性質;平行四邊形的判定;它們之間有什么聯(lián)系?
2.你能說說平行四邊形性質與判定的用途嗎?
。ù穑浩叫兴倪呅沃R的運用包括三個方面:一是直接運用平行四邊形的性質去解決某些問題.例如求角的度數,線段的長度,證明角相等或線段相等等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質去解決某些問題.)
3.創(chuàng)設情境
實驗:請同學們思考:將任意一個三角形分成四個全等的三角形,你是如何切割的?(答案如圖)
圖中有幾個平行四邊形?你是如何判斷的?
二、例習題分析
例1(教材P98例4)如圖,點D、E、分別為△ABC邊AB、AC的中點,求證:DE∥BC且DE=BC.
分析:所證明的結論既有平行關系,又有數量關系,聯(lián)想已學過的知識,可以把要證明的內容轉化到一個平行四邊形中,利用平行四邊形的對邊平行且相等的性質來證明結論成立,從而使問題得到解決,這就需要添加適當的輔助線來構造平行四邊形.
方法1:如圖(1),延長DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因為DE=DF,所以DE∥BC且DE=BC.
。ㄒ部梢赃^點C作CF∥AB交DE的延長線于F點,證明方法與上面大體相同)
方法2:如圖(2),延長DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因為AD=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因為DE=DF,所以DE∥BC且DE=BC.
定義:連接三角形兩邊中點的線段叫做三角形的中位線.
【思考】:
。1)想一想:①一個三角形的中位線共有幾條?②三角形的'中位線與中線有什么區(qū)別?
。2)三角形的中位線與第三邊有怎樣的關系?
。ù穑海1)一個三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點不同.中位線是中點與中點的連線;中線是頂點與對邊中點的連線.(2)三角形的中位線與第三邊的關系:三角形的中位線平行與第三邊,且等于第三邊的一半.)
三角形中位線的性質:三角形的中位線平行與第三邊,且等于第三邊的一半。
【平行四邊形教案】相關文章:
平行四邊形教案03-27
《平行四邊形的認識》教案07-09
平行四邊形的面積教案06-18
平行四邊形教案優(yōu)秀05-23
《平行四邊形的面積》教案06-23
平行四邊形的認識教案07-30
平行四邊形面積教案02-09
《認識平行四邊形》教案09-23
《平行四邊形的面積》教案03-02
平行四邊形的認識教案【集合】07-30