- 相關推薦
等差數列的前n項教案
在教學工作者實際的教學活動中,往往需要進行教案編寫工作,教案是教學藍圖,可以有效提高教學效率。那么問題來了,教案應該怎么寫?以下是小編為大家收集的等差數列的前n項教案,希望對大家有所幫助。
等差數列的前n項教案1
【教學目標】
一、知識與技能
1.掌握等差數列前n項和公式;
2.體會等差數列前n項和公式的推導過程;
3.會簡單運用等差數列前n項和公式。
二、過程與方法
1. 通過對等差數列前n項和公式的推導,體會倒序相加求和的思想方法;
2. 通過公式的運用體會方程的思想。
三、情感態(tài)度與價值觀
結合具體模型,將教材知識和實際生活聯(lián)系起來,使學生感受數學的實用性,有效激發(fā)學習興趣,并通過對等差數列求和歷史的了解,滲透數學史和數學文化。
【教學重點】
等差數列前n項和公式的推導和應用。
【教學難點】
在等差數列前n項和公式的推導過程中體會倒序相加的思想方法。
【重點、難點解決策略】
本課在設計上采用了由特殊到一般、從具體到抽象的教學策略。利用數形結合、類比歸納的思想,層層深入,通過學生自主探究、分析、整理出推導公式的思路,同時,借助多媒體的直觀演示,幫助學生理解,師生互動、講練結合,從而突出重點、突破教學難點。
【教學用具】
多媒體軟件,電腦
【教學過程】
一、明確數列前n項和的定義,確定本節(jié)課中心任務:
本節(jié)課我們來學習《等差數列的前n項和》,那么什么叫數列的前n項和呢,對于數列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,
如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數列的前n項和。
二、問題牽引,探究發(fā)現(xiàn)
問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?
即: S100=1+2+3+······+100=?
著名數學家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學們思考高斯方法的特點,適合類型和方法本質。
特點: 首項與末項的和: 1+100=101,
第2項與倒數第2項的和: 2+99 =101,
第3項與倒數第3項的和: 3+98 =101,
· · · · · ·
第50項與倒數第50項的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同學們討論后總結發(fā)言:等差數列項數為偶數相加時首尾配對,變不同數的加法運算為相同數的乘法運算大大提高效率。高斯的方法很妙,如果等差數列的'項數為奇數時怎么辦呢?
探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數,高斯的首尾配對法行嗎?
即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學生發(fā)現(xiàn)當項數為奇數時,首尾配對出現(xiàn)了問題,通過動畫演示引導幫助學生思考解決問題的辦法,為引出倒序相加法做鋪墊。
把“全等三角形”倒置,與原圖構成平行四邊形。平行四邊形中的每行寶石的個數均為21個,共21行。有什么啟發(fā)?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
這個方法也很好,那么項數為偶數這個方法還行嗎?
探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?
學生探究的同時通過動畫演示幫助學生思考剛才的方法是否同樣可行?請同學們自主探究一下(老師演示動畫幫助學生)
S8=5+6+7+8+9+10+11+12=
【設計意圖】進一步引導學生探究項數為偶數的等差數列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數的等差數列求和,最終確立倒序相加的思想和方法!
好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數列的前n項和?
問題2:等差數列1,2,3,…,n, … 的前n項和怎么求呢?
解:(根據前面的學習,請學生自主思考獨立完成)
【設計意圖】強化倒序相加法的理解和運用,為更一般的等差數列求和打下基礎。
至此同學們已經掌握了倒序相加法,相信大家可以推導更一般的等差數列前n項和公式了。
問題3:對于一般的等差數列{an}首項為a1,公差為d,如何推導它的前n項和sn公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式變形:將代入可得:
【設計意圖】學生在前面的探究基礎上水到渠成順理成章很快就可以推導出一般等差數列的前n項和公式,從而完成本節(jié)課的中心任務。在這個過程中放手讓學生自主推導,同時也復習等差數列的通項公式和基本性質。
三、公式的認識與理解:
1、根據前面的推導可知等差數列求和的兩個公式為:
(公式一)
。ü蕉
探究: 1、(1)相同點: 都需知道a1與n;
(2)不同點: 第一個還需知道an ,第二個還需知道d;
(3)明確若a1,d,n,an中已知三個量就可求Sn。
2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。
2、探索與發(fā)現(xiàn)3:等差數列前n項和公式與梯形面積公式有什么聯(lián)系?
用梯形面積公式記憶等差數列前 n 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列 n 項和的兩個公式.,請學生聯(lián)想思考總結來有助于記憶。
【設計意圖】幫助學生類比聯(lián)想,拓展思維,增加興趣,強化記憶
四、公式應用、講練結合
1、練一練:
有了兩個公式,請同學們來練一練,看誰做的快做的對!
根據下列各題中的條件,求相應的等差數列{an}的Sn :
(1)a1=5,an=95,n=10
解:500
(2)a1=100,d=-2,n=50
解:
【設計意圖】熟悉并強化公式的理解和應用,進一步鞏固“知三求二”。
下面我們來看兩個例題:
2、例題1:
20xx年11月14日教育部下發(fā)了<<關于在中小學實施“校校通”工程的通知>>.某市據此提出了實施“校校通”工程的總目標:從20xx年起用10年時間,在全市中小學建成不同標準的校園網. 據測算,20xx年該市用于“校校通”工程的經費為500萬元.為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元.那么從20xx年起的未來10年內,該市在“校校通”工程中的總投入是多少?
解:設從20xx年起第n年投入的資金為an,根據題意,數列{an}是一個等差數列,其中 a1=500, d=50
那么,到20xx年(n=10),投入的資金總額為
答: 從20xx年起的未來10年內,該市在“校校通”工程中的總投入是7250萬元。
【設計意圖】讓學生體會數列知識在生活中的應用及簡單的數學建模思想方法。
3、例題2:
已知一個等差數列{an}的前10項的和是310,前20項的和是1220,由這些條件可以確定這個等差數列的前n項和的公式嗎?
解:
法1:由題意知
,
代入公式得:
解得,
法2:由題意知
,
代入公式得:
,
即,
、冖俚,,故
由得故
【設計意圖】掌握并能靈活應用公式并體會方程的思想方法。
4、反饋達標:
練習一:在等差數列{an}中,a1=20, an=54,sn =999,求n.
解:由解n=27
練習2: 已知{an}為等差數列,,求公差。
解:由公式得
即d=2
【設計意圖】進一強化求和公式的靈活應用及化歸的思想(化歸到首項和公差這兩個基本元)。
五、歸納總結 分享收獲:(活躍課堂氣氛,鼓勵學生大膽發(fā)言,培養(yǎng)總結和表達能力)
1、倒序相加法求和的思想及應用;
2、等差數列前n項和公式的推導過程;
3、掌握等差數列的兩個求和公式,;
4、前n項和公式的靈活應用及方程的思想。
…………
六、作業(yè)布置:
。ㄒ唬⿻孀鳂I(yè):
1.已知等差數列{an},其中d=2,n=15, an =-10,求a1及sn。
2.在a,b之間插入10個數,使它們同這兩個數成等差數列,求這10個數的和。
。ǘ┱n后思考:
思考:等差數列的前n項和公式的推導方法除了倒序相加法還有沒有其它方法呢?
【設計意圖】通過布置書面作業(yè)鞏固所學知識及方法,同時通過布置課后思考題來延伸知識拓展思維。
附:板書設計
等差數列的前n項和
1、數列前n項和的定義:
2、等差數列前n項和公式的推導:
3、公式的認識與理解:
公式一:
公式二:
四:例題及解答:
議練活動:
等差數列的前n項教案2
教學目標
1.掌握等差數列前項和的公式,并能運用公式解決簡單的問題.
。1)了解等差數列前項和的定義,了解逆項相加的原理,理解等差數列前項和公式推導的過程,記憶公式的兩種形式;
。2)用方程思想認識等差數列前項和的公式,利用公式求;等差數列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
。3)會利用等差數列通項公式與前項和的公式研究的最值.
2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的`一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發(fā)展學生的思維水平.
4.通過公式的推導過程,展現(xiàn)數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數學地解決問題.
教學建議
(1)知識結構
本節(jié)內容是等差數列前項和公式的推導和應用,首先通過具體的例子給出了求等差數列前項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
。2)重點、難點分析
教學重點是等差數列前項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前項和公式與通項公式的綜合運用體現(xiàn)了方程(組)思想.
高斯算法表現(xiàn)了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
。3)教法建議
、俦竟(jié)內容分為兩課時,一節(jié)為公式推導及簡單應用,一節(jié)側重于通項公式與前項和公式綜合運用.
、谇绊椇凸降耐茖,建議由具體問題引入,使學生體會問題源于生活.
、蹚娬{從特殊到一般,再從一般到特殊的思考方法與研究方法.
、苎a充等差數列前項和的最大值、最小值問題.
、萦锰菪蚊娣e公式記憶等差數列前項和公式.
等差數列的前n項教案3
教學目標
1.掌握等差數列前項和的公式,并能運用公式解決簡單的問題.
(1)了解等差數列前項和的定義,了解逆項相加的原理,理解等差數列前項和公式推導的過程,記憶公式的兩種形式;
。2)用方程思想認識等差數列前項和的公式,利用公式求;等差數列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
。3)會利用等差數列通項公式與前項和的公式研究的最值.
2.通過公式的推導和公式的'運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發(fā)展學生的思維水平.
4.通過公式的推導過程,展現(xiàn)數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數學地解決問題.
教學建議
。1)知識結構
本節(jié)內容是等差數列前項和公式的推導和應用,首先通過具體的例子給出了求等差數列前項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
。2)重點、難點分析
教學重點是等差數列前項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前項和公式與通項公式的綜合運用體現(xiàn)了方程(組)思想.
高斯算法表現(xiàn)了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
(3)教法建議
、俦竟(jié)內容分為兩課時,一節(jié)為公式推導及簡單應用,一節(jié)側重于通項公式與前項和公式綜合運用.
、谇绊椇凸降耐茖,建議由具體問題引入,使學生體會問題源于生活.
、蹚娬{從特殊到一般,再從一般到特殊的思考方法與研究方法.
、苎a充等差數列前項和的最大值、最小值問題.
、萦锰菪蚊娣e公式記憶等差數列前項和公式。
【等差數列的前n項教案】相關文章:
《等比數列前n項和公式》教學反思11-17
《d t n》教案08-30
大班拼音n教案10-23
d t n l教案04-02
高中數學等差數列教案09-29
等差數列教學反思04-14
《勇往直前》教案03-05
寒假前安全教育教案11-09
《un ün》教學反思04-19