亚洲国产成人超福利久久精品,日韩中文字幕一在线,综合图片亚洲综合网站,亚洲欧美激情综合首页,在线看日韩,欧美xxxx性喷潮,91亚洲国产成人久久精品网站

因數和倍數教案

時間:2024-08-13 17:25:59 教案 我要投稿

【合集】因數和倍數教案15篇

  作為一名辛苦耕耘的教育工作者,很有必要精心設計一份教案,教案有助于學生理解并掌握系統(tǒng)的知識。快來參考教案是怎么寫的吧!下面是小編收集整理的因數和倍數教案,希望能夠幫助到大家。

【合集】因數和倍數教案15篇

因數和倍數教案1

  教學目標:

  1、通過動手操作和寫不同的乘法算式,認識倍數和因數。

  2、依據倍數和因數的含義和已有的乘除法知識,自主探索并總結找一個數的倍數和因數的方法。

  3、在探索中,培養(yǎng)學生抽象,概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。

  教學重點、難點分析:

  由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確了一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節(jié)課的教學我把重點定位于理解因數和倍數的含義。教學難點是自主探索并總結找一個數的倍數和因數的方法。

  教學課時:

  人教版五年級下冊第二單元《因數與倍數》第一課時

  教具學具準備:

  1、學生每人準備12個大小完全相同的小正方形,一張寫有自己學號的卡片。

  2、教師準備多媒體課件。

  教學過程:

一、創(chuàng)設情景,明確探究目標

  師:人與人之間存在著許多種關系,我和你們的.關系是……?

  生:師生關系。

  師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節(jié)課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)

  1、操作激活。

  師:我們已經認識了哪幾類數?

  生:自然數,小數,分數。

  師:現(xiàn)在我們來研究自然數中數與數之間的關系。請你們用12個小正方形擺成不同的長方形,并根據擺成的不同情況寫出乘、除算式。

  2、全班交流。

  1×12=12、2×6=12、3×4=12

  12×1=12、6×2=12、4×3=12

  12÷1=12、12÷2=6、12÷3=4

  12÷12=1 、12÷6=2、12÷4=3

  師:在這3組乘、除法算式中,都有什么共同點?

  生匯報。

  師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?請看課本p12。

  師:2和6與12的關系還可以怎樣說呢?

  生:2和6是12的因數,12是2的倍數,也是6的倍數。

  師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?

  小組合作,交流匯報。

  師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。

  揭示課題:今天我們要根據這些算式研究數學新本領。因數和倍數。

  師:你能不能用同樣的方法說說另一道算式?

 �。ㄖ该f一說)

  師:你有沒有明白因數和倍數的關系了?

  那你還能找出12的其他因數嗎?

  3、舉例內化:

  你能寫出一個算式,讓你的同桌找一找因數和倍數嗎?(學生互說,教師巡視找出典型例子)

  4、下面的說法對嗎?說出理由。

 �。�1)48是6的倍數。

 �。�2)在13÷4=3……1中,13是4的倍數。

  (3)因為3×6=18,所以18是倍數,3和6是因數。

  師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。

  生:因為沒有說明18是誰的倍數,所以不對。

  師:你認為怎樣說才正確呢?

  生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。

  師強調:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。

  二、自主探究,找因數和倍數

  1、拓展提升,主動建構:

  ⑴遷移嘗試:請學生試著找出36的所有因數。

 �、平涣鞣椒ǎ航處熂磿r捕捉開發(fā)學生在課堂上的基礎性教學資源,并及時創(chuàng)生為生成性的教學資源,引導學生在交流中評價,在評價中探究,在發(fā)現(xiàn)中建構。預計學生會有這樣幾種情況出現(xiàn):一是寫得多與少的區(qū)別,二是找的方法上的區(qū)別。具體表現(xiàn)為:一是無序、沒有方法地寫出了一些,如2,3,6,而且僅此寫出了幾個;二是有順序地用乘法( )×( )=36的方法,一對一對地寫出了1,36,2,18,3,12,4,9,6,但沒有按照從小到大的順序寫;三是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫出: 1,2,3,4,6,9,12,18,36。

 �、菃⒌纤伎迹涸鯓诱也拍懿恢貜筒贿z漏?

 �、仍囈辉囌�20的所有因數。

 �、山榻B36的因數的另一種寫法————集合

  用集合形式寫18的因數

  2、創(chuàng)設情境,自主探究:

  3、遷移內化,自主探究:

 �、艊L試遷移:請學生嘗試遷移,用自己喜歡的方法寫出2的倍數和5,4,7的倍數。

  2的倍數有:2,4,6,8,10,12……

  5的倍數有:5,10,15,20,25……

 �、埔龑в^察:請學生觀察以上這些數的倍數,有什么發(fā)現(xiàn)?

 �。ㄒ粋€數的倍數的個數是無限的,一個數最小的倍數是它本身。)

 �。�3)還記得因數嗎,出示課件

  觀察:看一看這些數的因數,你有什么發(fā)現(xiàn)?(36最小的因數是1,最大的是36,……一個數最小的因數是1,最大的因數是它本身。)

  三、變式拓展,實踐應用

  指導學生做書本“練習二”的第2題和第3題。

  四、全課總結

  師:今天這節(jié)課我們一起學習了“約數和倍數”,你有哪些收獲?

  課堂練習:游戲:“我的朋友在哪里?”

  游戲規(guī)則:

 �。�1)一位同學提出所要找的朋友的要求,例:“我的因數在哪里?”或“我的倍數在哪里?”

 �。�2)相應學號的同學站起來,其他同學判斷是否正確。

  作業(yè)安排:

  引導學生根據實際猜老師年齡,給出范圍:老師的年齡既是2的倍數也是5的倍數

因數和倍數教案2

  教學目標

  1.創(chuàng)設多種練習的情境,使學生在掌握找一個數的倍數和因數方法的基礎上,能正確、靈活地按要求找出相應的倍數和因數,并初步體會公倍數、公因數的含義。

  2.在練習、交流、討論、辨析等過程中,培養(yǎng)學生的觀察、分析和抽象概括能力。

  3.使學生在探索學習的過程中,主動與他人合作、交流,獲得一些成功的體驗,培養(yǎng)對數學學習的興趣。

  重點難點

  掌握倍數和因數的概念;初步體會公倍數、公因數的含義

  教學準備

  小黑板。

  教學過程

  過程目標

  教師活動

  學生活動

  教學反思

  復習導入

  復習倍數和因數有關的知識,為今天的練習課做好準備。

  1.出示:12×5=60

  設問:哪個數是哪個數的倍數,哪個數是哪個數的因數?能不能說5是因數或60是倍數?

  2.小黑板出示:25的因數有

  6的倍數有

  完成后組織反饋方法。

  1.個別說一說。

  2.獨立寫,一生板演,完成后小組里交流方法。

  教學環(huán)節(jié)

  過程目標

  教師活動

  學生活動

  教學反思

  二

  鞏固練習

  按要求寫出一個數的倍數和因數,著重練習寫一個數的倍數和因數的方法.第五題要注意6的倍數不應該大于40,7的倍數只要寫幾個再標上省略號。

  讓學生按要求找出相應的數,并初步體會公倍數和公因數的含義。

  使學生感受到數學知識之間的內在聯(lián)系,發(fā)展數學思考。

  1.基本練習:書本想想做做4。

  布置要求,組織填寫。

  組織交流反饋。

  設問:從小到大寫5個,需要把所有的倍數全部寫出來嗎?

  就體小結:一個數的因數的個數是有限的,所以寫一個數的因數時要全部寫出來;而一個數的倍數的'個數是無限的,按要求寫出5個,就不用寫省略號。

  2.書本想想做做5:

  布置要求,巡視。組織交流反饋。

  歸納:40以內6的倍數不需要把所有6的倍數全部寫出來

  3.深化練習:書本想想做做6和7:

  布置要求,巡視檢查。

  組織校對方法。

  小結方法:24既是4的倍數,又是6的倍數;2、3、6、同時是12和8的因數。

  4.拓展練習:

  書本73頁思考題:引導審題,布置練習,組織反饋。

  1.獨立在書上完成,指名4個學生在黑板上板書。

  仔細傾聽。

  2.獨立在書上完成,指名3個學生在黑板上板書。并請個別學生交流反饋方法。

  3.按要求說出答案并交流反饋。

  4.獨立審題,小組交流反饋想法。

  這節(jié)課學生的書寫上還有點不過關,例如“從小到大寫5個”有的人把所有的情況都寫出來了,關鍵在寫倍數和因數的時候要看清題目要求.

  1.設問:這節(jié)課你學到了什么?

  2.布置作業(yè):補充練習相關練習。

  1.個別交流。

  2.獨立作業(yè)。

  板書設計:因數和倍數練習

 �。▽W生板演略)

因數和倍數教案3

  教學目標:

  知識與技能、過程與方法:

  1、從操作活動中理解因數和倍數的好處,會決定一個數是不是另一個數的因數或倍數。

  情感態(tài)度與價值觀:

  2、培養(yǎng)學生抽象、概括的潛力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。

  3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數學學習的情感。

  教學重、難點:

  1、理解因數和倍數的含義。

  2、學會求一個數的因數或倍數的方法。

  教學準備:

  課件

  教學過程設計:

  一、創(chuàng)設情境,引入新課

  師:人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?

  生:父子(父母、母子、母女)關系。

  師:我和你們的關系是?

  生:師生關系。

  師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節(jié)課,我們一齊探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)

  二、探究新知

 �。ㄒ唬⿲W習因數和倍數的概念

  1、出示主題圖,讓學生各列一道乘法算式。

  2、師:看你能不能讀懂下面的算式?

  出示:因為26=12

  所以2是12的因數,6也是12的因數;

  12是2的倍數,12也是6的倍數。

  3、師:你能不能用同樣的方法說說另一道算式?

  (指名生說一說)

  4、師:你有沒有明白因數和倍數的關系了?

  那你還能找出12的其他因數嗎?

 �。ǘ�、學習求一個的因數或倍數的方法。

  A、找因數:

  1、出示例1:18的因數有哪幾個?

  從12的因數能夠看得出,一個數的因數還不止一個,那我們一齊找找看18的因數有哪些?

  學生嘗試完成:匯報

  (18的.因數有:1,2,3,6,9,18)

  師:說說看你是怎樣找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)

  師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

  2、用這樣的方法,請你再找一找36的因數有那些?

  匯報36的因數有:1,2,3,4,6,9,12,18,36

  師:你是怎樣找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫能夠嗎?為什么?(不能夠,因為重復的因數只要寫一個就能夠了,所以不需要寫兩個6)

  仔細看看,36的因數中,最小的是幾,最大的是幾?

  看來,任何一個數的因數,最小的必須是(),而最大的必須是()。

  3、你還想找哪個數的因數?(18、5、42)請你選取其中的一個在自練本上寫一寫,然后匯報。

  4、其實寫一個數的因數除了這樣寫以外,還能夠用集合表示。

  小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

  從最小的自然數1找起,也就是從最小的因數找起,一向找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  B、找倍數:

  1、我們一齊找到了18的因數,那2的倍數你能找出來嗎? 匯報:2、4、6、8、10、16、

  師:為什么找不完

  你是怎樣找到這些倍數的(生:只要用2去乘1、乘2、乘3、乘4、)那么2的倍數最小是幾最大的你能找到嗎

  2、讓學生完成做一做1、2小題:找3和5的倍數。

  匯報3的倍數有:3,6,9,12

  改寫成:3的倍數有:3,6,9,12,你是怎樣找的?(用3分別乘以1,2,3,倍)

  5的倍數有:5,10,15,20,師:表示一個數的倍數狀況,除了用這種文字敘述的方法外,還能夠用集合來表示

  2的倍數3的倍數5的倍數

  師:我們明白一個數的因數的個數是有限的,那么一個數的倍數個數是怎樣樣的呢?

 �。ㄒ粋€數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)

  三、課堂小結

  我們一齊來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

  板書設計:

  因數與倍數

  因數與倍數指的是數與數之間的關系。

  一個數因數的個數是有限的,最小的因數是1最大的因數是它本身。

  一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

  教學反思:

  教材上,探究因數這部分的例題比較少,只有一個:找18的因數。根據學生的實際狀況,我進行了重組教材,先讓學生根據乘法算式一對對地找出15的因數,在此基礎上再讓學生探究18的因數。透過質疑:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發(fā)現(xiàn):按照必須的順序一對對的找因數,能既找全又不遺漏。進而又借助體態(tài)語言打手勢,讓學生說出30和36的因數,到達了鞏固練習的目的。又明確了像36當兩個因數相等時,只寫其中的一個6。這樣設計由易到難,由淺入深,貼合了學生的認知規(guī)律。

因數和倍數教案4

  教學內容:

  蘇教版義務教育教科書《數學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。

  教學目標:

  1.使學生認識倍數和因數,能判斷兩個自然數間的因數和倍數關系;學會找一個數的因數和倍數的方法,能按順序找出100以內自然數的所有因數,10以內自然數的所有倍數;了解一個數的因數、倍數的特點。

  2.使學生經歷探索求一個數的因數或倍數的'方法、一個數的因數和倍數特點的過程,體會數學知識、方法的內在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數感。

  3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數學的信心,養(yǎng)成樂于思考、勇于探究等良好品質。

  教學重點:

  認識因數和倍數。

  教學難點:

  求一個數的因數、倍數的方法。

  教學準備:

  小黑板、準備12個同樣大的正方形學具。

  教學過程:

  一、操作引入,認識意義

  1.操作交流。

  引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。

  交流:你有哪些拼法?請你說一說,并交流你表示的算式。

  結合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。

  2.認識意義。

  (1)說明:我們先看43=12。根據43-12,我們就可以說:4和3都是12的因數;反過來,12是4的倍數,也是3的倍數。

 �。�2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的倍數嗎?同桌互相說說看。

 �。�3) 小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是O的自然數。

因數和倍數教案5

  教學目標:

  1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數和因數的意義;探索求個數的倍數和因數的方法,發(fā)現(xiàn)一個數倍數和因數的某些特征。

  2、在探索一個數的倍數和因數的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。

  3、通過倍數和因數之間的互相依存關系使學生感受數學知識的內在聯(lián)系,體會到數學內容的奇妙、有趣。

  教學重點:理解倍數和因數的意義。

  教學難點:探索求一個數的倍數和因數的方法。

  教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。

  設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數學思考的方法。

  教學過程:

  一、智力競猜 引入新課

  1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)

  2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。

  3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數中某兩個數之間也有這種類似的依存關系倍數和因數。

  設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊。

  二、操作發(fā)現(xiàn) 理解概念

  1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。

  2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)

  設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。

  3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。

  4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。

  5、讓學生仿照說出62=12和121=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。

  6、學生相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。學生可能會出現(xiàn)0( )=0的情況,借此向學生說明我們研究因敷和倍數一般指不是0的自然數。

  設計說明:倍數和因數是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數和因數的認識,同時使學生明確倍數和因數的研究范圍。

  7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓學生試一試其他幾個除法算式中的關系。

  8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數

  54=20 357=5 3+4=7

  (1)學生回答后引發(fā)學生思考:能不能說20是倍數,4是因數。使學生進一步理解倍數是兩個數之間的一種相互依存的關系,必須說哪個是哪個的倍數,因數也同樣如此。

  (2)通過3+4=7使學生進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。

  設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。

  三、探索方法 發(fā)現(xiàn)特征

  1、找一個數的因數。

  (1)聯(lián)系板書的乘除法算式觀察思考12的因數有哪些,井想辦法找出15的所有因數。

  (2)學生獨立思考,明白根據一個乘法(除法)算式可以找出15的兩個因數,在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數。

  (3)用一對一對的方法找出36的所有因數�?赡苡械膶W生根據乘法算式找的,也有的學生是根據除法算式找的,都應該給予肯定。

  (4)引導學生觀察12、15、36的因數,說一說有什么發(fā)現(xiàn)。一個數的因數個數是有限的,其中最小的因數都是1,最大的都是它本身。

  設計說明:先安排學生找一個數的'因數可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。學生交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數的因數的某些特征。

  2、找一個數的倍數。

  (1)讓學生找3的倍數,比一比誰找得多。

  (2)學生匯報后,引導學生有序思考,并得出3的倍數可以用3乘連續(xù)的自然數1、2、3,3的倍數的個數是無限的,所以寫3的倍數時要借助省略號表示結果。

  (3)找出2的倍數和5的倍數,并引導學生觀察3、2、5的倍數情況,說一說有什么發(fā)現(xiàn)。一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。

  設計說明:讓學生比一比誰找的倍數多,可以使學生產生認知沖突,認識到一個數的倍數個數是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數倍數的特征。

  四、鞏固練習

  師;剛才同學們認識了倍數和因數,并且探索了求一個數因數和倍數的方法,想不想檢查一下自己掌握得如何?

  1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(或因數)。

  2、想想做做的第2題。學生填好后引導學生說一說:表中的應付元數其實都是什么?表格中為什么用省略號?

  3、想想做做的第3題。學生填好后引導學生說一說:表格中所有數都是什么?這個表格中為什么沒有省略號?

  4、游戲找朋友。讓學生拿出各自的學號卡片,找出自己學號數的所有因數,使學生發(fā)現(xiàn)每個學號數的因數都在全班的學號數以內;再讓學生找一找自己學號數的倍數,井說一說能不能在全班學號數內部找到一個,還有其他的嗎?

  設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數倍數和因數的方法,以及倍數和因數的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。

  五、自我梳理 探索延伸

  1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。

  2、生活中許多現(xiàn)象與我們學習的倍數和因數的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數是兩位數中最多的,可以方便計算。

  設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數和因數的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數學知識的應用價值。

因數和倍數教案6

  教學內容:教科書第25頁,練習四第5~8題。

  教學目標:

  1、通過練習與對比,使學生發(fā)現(xiàn)和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。

  2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。

  3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數學與生活的聯(lián)系。

  教學過程:

  一、基本訓練

  1、我們已經掌握了找兩個數的公倍數和最小公倍數的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。

 �。ò鍟n題:公倍數和最小公倍數練習)

  2、填空。

  5的'倍數有:( )

  7的倍數有:( )

  5和7的公倍數有:( )

  5和7的最小公倍數是:( )

  3、完成練習四第5題。

 �。�1)理解題意,獨立找出每組數的最小公倍數。

 �。�2)匯報結果,集體評講。

 �。�3)觀察第一組中兩個數的最小公倍數,看看有什么發(fā)現(xiàn)?

  每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?

  (4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)

  在有些情況下,兩個數的最小公倍數是這兩個數的乘積。

  4、完成練習四第6題。

  你能運用上一題的規(guī)律直接寫出每題中兩個數的最小公倍數嗎?

  交流,匯報。

  說說你是怎么想的?

  二、提高訓練

  1、完成練習四第7題。

 �。�1)理解題意,獨立完成填表。

  (2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?

  你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)

  2、完成練習四第8題。

  (1)理解題意。

 �。�2)“每隔6天去一次”是指7月31日去過以后,下一次訓練日期是8月6日�!懊扛�8天去一次”指的是什么呢?

  你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)

  你是怎樣知道的?

  要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)

  三、課堂小結

  通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。

  在小組中互相說說自己本節(jié)課的收獲。

因數和倍數教案7

  第二單元《因數和倍數》

  執(zhí)筆: 審核: 五年級___班 姓名: 20xx年 月 日 教學內容:質數和合數綜合練習

  教學重點:掌握質數、合數、偶數、奇數之間的聯(lián)系和區(qū)別。教學難點:會運用質數和合數解決實際問題。

  課堂練習。

  1、填空:

 �。�1)一個數,如果只有()兩個因數,這樣的數叫做質數。

  (2)一個數,如果除了()還有別的因數,這樣的數叫做合數。(3)20以內的質數有(),其中()是偶數。

  2、判斷:

  (1)所有的質數都是奇數。()(2)所有的`偶數都是合數。()(3)除0外,自然數不是質數就是合數。()(4)兩個質數的和都是偶數。()(5)兩個合數的和都是偶數。()(6)除0和2以外,所有的偶數都是合數。()

  3、分類:

  1,13,27,41,57,61,73,84,95,47,11,15,33,49,51,63,87,99

  質數

  合數

  我發(fā)現(xiàn):________________________________________________________

  4、按要求在括號內填上數字:(1)()比9大比13小的奇數;()是最小的合數。(2)()是100以內最大的質數;()是100以內最大的奇數。(3)()是最小的自然數;()既不是質數也不是合數。

  5、金星小學六年級組織夏令營活動,共有516人參加,每輛客車乘坐人數在40~50人之間,請你幫忙算一算,學校租用幾輛大客車,可以正好使每輛車載的人數相等,每輛車載多少人?

  6、食品店運來42個面包,如果每5個裝一袋能正好裝完嗎?如果每3個裝一袋,能正好裝完嗎?為什么?

因數和倍數教案8

  教學內容:蘇教版(義教課標數學)四下第70-71的例題以和72頁“想想做做”的1-3頁。

  教學目標:

  1、通過操作活動得出相應的乘除法算式,協(xié)助同學理解倍數和因數的意義;探索求—個數的倍數和因數的方法,發(fā)現(xiàn)一個數倍數和因數的某些特征。

  2、在探索一個數的倍數和因數的過程中培養(yǎng)同學觀察、分析、概括能力,培養(yǎng)有序考慮能力。

  3、通過倍數和因數之間的互相依存關系使同學感受數學知識的內在聯(lián)系,體會到數學內容的奇妙、有趣。

  教學重點:理解倍數和因數的意義。

  教學難點:探索求一個數的倍數和因數的方法。

  教學準備:每桌準各12個一樣大小的正方形,每人準備一張自身學號的卡片。

  設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)同學持續(xù)的學習興趣;同學通過獨立考慮、合作文流進行自主探索;教師引導同學掌握數學考慮的方法。

  教學過程:

  一、智力競猜 引入新課

  1、讓同學進行“智力競猜”——春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(局部同學能猜出三個人分別是孫子、爸爸、和爺爺)

  2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發(fā)。請同學以韓有才為中心介紹—下三個人的關系。同學可能會說出“韓有才.是爸爸”,“韓有才是兒子”的語句,這時引導同學說出“誰是誰的爸爸”“誰是準的兒子”。

  3、上述“父子關系”是一種互相依存的關系,在表述時一定要完整。并向同學說明自然數中某兩個數之間也有這種類似的依存關系——倍數和因數。

  設計說明:“智力競猜”走同學喜歡的形式,因為每個同學都有爭強好勝之心,“競猜”有兩個作用,一是激發(fā)同學的學習興趣,二是以此引出“相互依存”的關系,為理解倍數和因數的相互依存關系作鋪墊。

  二、操作發(fā)現(xiàn) 理解概念

  1、師:“‘智慧從手指問流出’,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并考慮一下其中蘊涵著哪些不同的乘除法算式。”

  2、請同學匯報不同的擺法,以和相應的乘除法算式。(乘法算式和除法算式分開寫)再向同學說明:假如一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓同學特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)

  設計說明;讓同學寫出蘊涵的乘除法算式符合同學的知識基礎,同學有的可能用乘法表示,也有的可能用除法表示;讓同學將旋轉后相同的去掉,這是一次簡化,很多同學并不知道,需要指導,這樣可以使同學認識到事物的實質。

  3、讓同學一起看乘法算式4×3=12,向同學指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。

  4、先請一個同學站起來說一說.然后同桌的同學再互相說一說。

  5、讓同學仿照說出6×2=12和12×1=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。

  6、同學相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。同學可能會出現(xiàn)0×( )=0的情況,借此向同學說明我們研究因敷和倍數一般指不是0的自然數。

  設計說明:倍數和因數是全新的概念,需要教師的“傳授、講解”,需要同學的適當“記憶”——重復、仿照。當然,要使同學真正理解還必需舉一反三,通過互相舉例可以逐步完善同學對倍數和因數的認識,同時使同學明確倍數和因數的研究范圍。

  7、以4×3=12與12÷3=4為例,向同學說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓同學試一試其他幾個除法算式中的關系。

  8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數

  5×4=20 35÷7=5 3+4=7

  (1)同學回答后引發(fā)同學考慮:能不能說20是倍數,4是因數。使同學進一步理解倍數是兩個數之間的一種相互依存的關系,必需說哪個是哪個的倍數,因數也同樣如此。

  (2)通過3+4=7使同學進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。

  設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。

  三、探索方法 發(fā)現(xiàn)特征

  1、找一個數的因數。

  (1)聯(lián)系板書的乘除法算式觀察考慮12的因數有哪些,井想方法找出15的所有因數。

  (2)同學獨立考慮,明白根據一個乘法(除法)算式可以找出15的兩個因數,在同學充沛交流的基礎上引導同學有條理的“一對一對”說出15的因數。

  (3)用“一對一對”的方法找出36的所有因數�?赡苡械耐瑢W根據乘法算式找的,也有的同學是根據除法算式找的,都應該給予肯定。

  (4)引導同學觀察12、15、36的因數,說一說有什么發(fā)現(xiàn)。一個數的因數個數是有限的,其中最小的`因數都是1,最大的都是它自身。

  設計說明:先布置同學“找一個數的因數”可以使同學利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。同學交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導同學“一對一對”的找是必要的,它可以培養(yǎng)同學的有序考慮。最后引導同學觀察。使同學自主發(fā)現(xiàn)、歸納出一個數的因數的某些特征。

  2、找一個數的倍數。

  (1)讓同學找3的倍數,比一比誰找得多。

  (2)同學匯報后,引導同學有序考慮,并得出3的倍數可以用3乘連續(xù)的自然數1、2、3……,3的倍數的個數是無限的,所以寫3的倍數時要借助省略號表示結果。

  (3)找出2的倍數和5的倍數,并引導同學觀察3、2、5的倍數情況,說一說有什么發(fā)現(xiàn)。一個數的倍數個數是無限的,其中最小的倍數是它自身,沒有最大的倍數。

  設計說明:讓同學比一比誰找的倍數多,可以使同學發(fā)生認知抵觸,認識到一個數的倍數個數是無限的,在同學匯報后同樣需要引導同學的有序考慮,需要引導同學自主發(fā)現(xiàn)、歸納一個數倍數的特征。

  四、鞏固練習

  師;剛才同學們認識了倍數和因數,并且探索了求一個數因數和倍數的方法,想不想檢查一下自身掌握得如何?

  1、“想想做做”的第l題。同學表述后強調哪個是哪個的倍數(或因數)。

  2、“想想做做”的第2題。同學填好后引導同學說一說:表中的“應付元數”其實都是什么?表格中為什么用省略號?

  3、“想想做做”的第3題。同學填好后引導同學說一說:表格中所有數都是什么?這個表格中為什么沒有省略號?

  4、游戲——“找朋友”。讓同學拿出各自的學號卡片,找出自身學號數的所有因數,使同學發(fā)現(xiàn)每個學號數的因數都在全班的學號數以內;再讓同學找一找自身學號數的倍數,井說一說能不能在全班學號數內部找到一個,還有其他的嗎?

  設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯(lián)系實際,使同學感悟到其中蘊藏著求一個數倍數和因數的方法,以和倍數和因數的某些特征。第4題通過游戲活動進一步激發(fā)同學持續(xù)的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。

  五、自我梳理 探索延伸

  1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。

  2、生活中許多現(xiàn)象與我們學習的“倍數和因數”的知識有關,課后同學們可以利用今天所學的知識探索一下“1小時等于60分”的好處。通過探索使同學明白由于60的因數是兩位數中最多的,可以方便計算。

  設計說明:“向同伴介紹自身的收獲”可以將課堂中學到的知識進行自我梳理,同時通過探索“1小時等于60分”的好處“,可以鞏固倍數和因數的相關知識,溝通知識間的聯(lián)系,拓展同學的知識面,使同學認識到數學知識的應用價值。

因數和倍數教案9

  人教版小學數學五年級下冊《因數和倍數》

  1、教學目標:

  1、學生掌握找一個數的因數,倍數的方法;

  2、學生能了解一個數的因數是有限的,倍數是無限的;

  3、能熟練地找一個數的因數和倍數;

  4、培養(yǎng)學生的觀察能力。

  2、教學重點:掌握找一個數的因數和倍數的方法。

  3、教學難點:能熟練地找一個數的因數和倍數。

  教學過程:

  一、引入新課。

  1、出示主題圖,讓學生各列一道乘法算式。

  2、師:看你能不能讀懂下面的算式?

  出示:因為2×6=12

  所以2是12的因數,6也是12的因數;

  12是2的倍數,12也是6的倍數。

  3、師:你能不能用同樣的方法說說另一道算式?(指名生說一說)

  師:你有沒有明白因數和倍數的關系了?

  小組討論:兩個數在什么情況下才有因數和倍數關系?我們能不能說“2”是因數,“12”是倍數呢?

  讓學生討論交流,教師歸納總結:因數和倍數是相互依存的,不能單獨存在。注意體會“因數和倍數是相互依存的”是什么意思。

  那你還能找出12的其他因數嗎?

  4、你能不能寫一個算式來考考同桌?學生寫算式。

  師:誰來出一個算式考考全班同學?

  5、師:今天我們就來學習因數和倍數。(出示課題:因數 倍數)

  齊讀p12的注意。

  二、新授:

 �。ㄒ唬┱乙驍担�

  1、出示例1:18的因數有哪幾個?

  從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些?

  學生嘗試完成:匯報

 �。�18的因數有: 1,2,3,6,9,18)

  師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

  師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到------小學資源網投稿電話:0

  QQ:-----

  大排列的。

  2、用這樣的方法,請你再找一找36的因數有那些? 匯報36的因數有: 1,2,3,4,6,9,12,18,36 師:你是怎么找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)

  仔細看看,36的因數中,最小的是幾,最大的是幾?

  看來,任何一個數的因數,最小的一定是(),而最大的一定是()。

  3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

  4、其實寫一個數的.因數除了這樣寫以外,還可以用集合表示:如

  18的因數

  小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

  從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  5.讓學生結合18、36、30的因數個數,思考:一個數的因數的個數是有限的還是無限的?

  小結:一個數的因數的個數是有限的。

 �。ǘ┱冶稊担�

  1、我們一起找到了18的因數,那2的倍數你能找出來嗎? 匯報:2、4、6、8、10、16、…… 師:為什么找不完? 你是怎么找到這些倍數的?(生:只要用2去乘

  1、乘

  2、乘

  3、乘

  4、…)那么2的倍數最小是幾?最大的你能找到嗎?

  2、讓學生完成做一做1、2小題:找3和5的倍數。匯報 3的倍數有:3,6,9,12

  師:這樣寫可以嗎?為什么?應該怎么改呢? 改寫成:3的倍數有:3,6,9,12,……

  你是怎么找的?(用3分別乘以1,2,3,……倍)

  5的倍數有:5,10,15,20,……

  讓學生明確3和5的倍數有無限個,所以我們用“......”來表示。

  師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示

  2的倍數 3的倍數 5的倍數

  師:同學們考慮,5的最小倍數是幾,有沒有最大倍數?3呢?2呢?(總結出一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。)

  三、課堂小結:

  我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

  四、獨立作業(yè):

  ------小學資源網投稿電話:0

  QQ:-----

  板書設計:

  教學反思

  ------小學資源網投稿電話:0 QQ:-----

因數和倍數教案10

  教學目標:

  1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。

  交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。

  3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯(lián)系,提高數學思考的水平。

  教學重點:

  理解因數和倍數的含義,知道它們的關系是相互依存的。

  教學難點:

  探索并掌握找一個數的因數的方法。

  教學準備:

  每個學生的學號紙。

  教學過程設計:

一、認識倍數、因數的含義

  1、操作活動。

 �。�1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。

 �。ń涣鳎謩e板書4×3=1212×1=126×2=12

  2、通過剛才的學習,我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。

  3、今天我們就來研究倍數和因數的知識。

 �。ń沂菊n題:倍數和因數)

 �。�1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?

  指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?

  小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。

 �。�2)出示:20×3=60,36÷4=9。同桌相互說一說誰是誰的倍數?誰是誰的因數?

  指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。

  二、探索找一個數倍數的方法。

  1、從4×3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。

  2、提問:什么樣的數是3的倍數?你能按從小到大的順序有條理的說出3的倍數嗎?能全部說完嗎?可以怎么表示?

  3、議一議:你發(fā)現(xiàn)找3的倍數有什么小竅門?

  明確:可以按從小到大的順序,依次用3……與3相乘,乘得的積就是3的倍數。

  4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?

  生獨立完成,集體交流。注意用……表示結果。

  5、觀察上面的3個例子,你發(fā)現(xiàn)一個數的倍數有什么特點?

  根據學生的交流歸納:一個數的倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。

  6、做“想想做做”第2題。

  學生填表后討論:表中的應付元數是怎么算的?有什么共同特點?你還能說出4的哪些倍數?說的完嗎?

  二、探索求一個數因數的方法。

  1、學會了找一個數倍數的方法,再來研究求一個數的因數。

  你能找出36的所有因數嗎?

  2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的`找法。

  3、出示一份作業(yè):對照自己找出的36的因數,你想對他說點什么?

  板書:(有序、全面)。正因為思考的有序,才會有答案的全面。

  5、試一試:請你用有序的思考找一找15和16的因數。

  指名寫在黑板上。

  6、觀察發(fā)現(xiàn)一個數的因數的特點。

  一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。

  7、“想想做做”第3題。

  生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。

  四、課堂總結:學到這兒,你有哪些收獲?

  五、游戲:“看誰反應快”。

  規(guī)則:學號符合下面要求的請站起來,并舉起學號紙。

 �。▽W號是5的倍數的。

 �。ㄕl的學號是24的因數。

 �。▽W號是30的因數。

  (誰的學號是1的倍數。

  思考:

  1、倍數和因數是一個比較抽象的知識,教學中讓學生擺出圖形,通過乘法算式來認識倍數和因數。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據乘法算式,從學生已有知識出發(fā),學習倍數和因數,初步體會其意義

  2、在得出這些乘法算式以后,先根據4×3=12說明12是3和4的倍數,3和4都是12的因數,使學生初步體會倍數和因數的含義。在學生初

  步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20×3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。

  在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。

  2和5的所有倍數,發(fā)現(xiàn)一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。

  用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。

  ……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。

  為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。

因數和倍數教案11

  教材分析:

  以乘、除法知識拓展方式,引入對“因數與倍數”知識的學習。有利于溝通新舊知識之間的聯(lián)系,分散難點,便于學生理解和掌握知識。

  教學目標:

 �、僭诰唧w的情境中,借助乘法算式認識因數和倍數。

 �、谡莆涨笠粋€數的因數和倍數的方法,知道一個數的因數及倍數的特點。

  重點難點突破:

  為了突出重點、突破難點,特設計以下三個環(huán)節(jié)進行教學:

  ① 以學生的貼畫為素材,通過不同的貼法引出不同的`乘法算式,以乘法算式引出因數

  和倍數的意義。

 �、谝龑W生自主找一個數的因數,以此加深對因數的理解。

  ③引導學生自主找一個數的倍數,以此加深對倍數的理解。

  組內教師討論要點:

  ①找一個數的因數時,一定要放手,且給學生足夠的時間讓他們去同位之間、小組內交流,如何能快速且沒有遺漏的找全。

  ②及時的練習鞏固也是很有必要的,在多個練習的基礎之上讓學生發(fā)現(xiàn)一個數因數的特點。

 �、壅乙粋€數的因數也反映出學生的口算水平的高低。

 �、苷乙粋€數的倍數時,以找2、3、5的倍數為主,讓學生發(fā)現(xiàn)一個數倍數的特征。

因數和倍數教案12

  教學內容:教科書第30頁,練習五第12~14題、思考題。

  教學目標:

  1.通過練習,使學生進一步掌握求兩個數最大公因數和最小公倍數的方法,進行有條理思考。

  2.通過練習,使學生建立合理的認知結構,鍛煉學生的思維,提高解決實際問題的能力。

  教學重點:進一步理解公倍數和公因數的含義,弄清它們的聯(lián)系與區(qū)別。

  教學難點:弄清公倍數和公因數聯(lián)系與區(qū)別。

  教學過程:

  一、揭示課題

  今天我們繼續(xù)完成一些公因數、公倍數的.有關練習。

  二、基礎訓練

  1.寫出36和24的公因數,最大公因數是多少?

  2.寫出100以內10和6的公倍數,最小公倍數是多少?

  學生獨立完成,匯報交流。

  說說自己是用什么方法找到的?

  三、綜合練習

  1.完成練習五第12題。

  誰能說說什么數是兩個數的公倍數?兩個數的公因數指什么?

  在書上完成連線后匯報方法。

  你是怎樣找出24和16的公因數的?你是怎樣找到2和5的公倍數的?

  2.完成第13題。

  獨立完成。交流各自方法。

  3.完成第14題。

  獨立完成。交流各自方法。

  求最大公因數和最小公倍數的方法有什么相同和不同?

  什么情況下可以直接寫出兩個數的最大公因數?什么情況下可以直接寫出兩個數的最小公倍數?

  4.完成思考題。

  (1)小組討論方法。

  (2)指導解法。

  把46塊水果糖分給同學后剩1塊,也就是同學們分了多少塊糖?(46-1)38塊巧克力分給同學后剩3塊,也就是分了多少塊巧克力?(38-3)每種糖都是平均分給這個小組的同學,因此這個小組的人數既是45的因數,又是35的因數。要求小組最多有幾人,就是求45和35的什么?(最大公因數)(45,35)=5因此這個組最多有5名同學。

  5.閱讀“你知道嗎”介紹了我國古代求兩個數的最大公因數的重要方法————輾轉相除發(fā)法,以及用短除法求兩個數的最大公因數和最小公倍數的符號表示方法

  四、課堂

  大家在學習公倍數和公因數這一單元時,首先要明白公倍數和公因數的意義,最大公因數和最小公倍數的意義,其次要掌握找公倍數、公因數、最小公倍數、最大公因數的方法,才能為后面的學習做好準備。

因數和倍數教案13

  教學目標:

  1、理解倍數和因數之間的關系是相互依存的。

  2、根據具體的問題情景,能正確確定某個非零自然數的所有因數。

  3、使學生體味數學的趣味性,激發(fā)學生對數學的探究熱情。

  教學重點:

  理解倍數和因數之間的關系是相互依存的,能正確求一個數的倍數和因數。

  教學難點:

  能正確有序求一個數的倍數和因數。

  教學過程:

  一、遷移引入

  師:同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟??。其實在我們的數學王國里,數與數之間也存在著這種相互依存的關系,請看大屏幕,認識這些數嗎?(課件出示:0,1,2,3,4,5)

  生:自然數。

 �。ㄕn件去“0”)

  師:去0后這又是些什么數?(非零自然數中。)這節(jié)課我們就在非零自然數中來研究數與數之間的這種相互依存的關系,

  板書:因數和倍數

 �。ㄑ芯糠秶悍橇阕匀粩抵校�

  二、探究新知

 �。ㄒ唬┱乙粋€數的因數

  1、(課件出示例1情境圖)

  師:請看大屏幕,這是36人列隊操練,每排人數要一樣多,可以怎樣排列?同學們可以先同桌討論,作好記錄,再匯報。(引導生說:可以站幾排,每排站幾個。)

  根據這些信息我們能列出哪些乘法算是呢?

  板書:1×36=362×18=363×12=364×9=366×6=361

  師:在4×9=36這個算式中,4和9叫什么?(因數)36是?(積),這是我們以前學的乘法各部分名稱。其實,在整數乘法中,因數和積之間還存在一種相互依存的關系,也就是說4是36的因數,36是4的倍數。,同樣,在這個算式中,我們還可以說9是36的?(因數),36是9的`?(倍數)。

  2、誰能像老師這樣,說一說3×12=36他們之間的關系。(先請一個學生站起來說一說)

  3、下面請同桌像剛才一樣互相說一說另外三個算式中(1×36=36 2×18=36 6×6=36)誰是誰的倍數,誰是誰的因數,開始。(師巡視,指導差生)然后指名說一說

  4、你能根據左邊的乘法算式寫出相應的除法算式嗎?(師根據生的回答板書)

  我們現(xiàn)在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數,誰是誰的因數?(說好后再讓學生逐個說出除法算式中的關系)

  5、剛才同學們都說4是36的因數,那能單獨說4是因數嗎?(生發(fā)表意見)

  到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數還是因數?(課件著重強調數字“4”)

  引導學生說:第一個式子中,4是36的因數,第二個式子中4是2的倍數。(課件出示結果)

  師:從剛才的回答中你明白了什么?(引導生知道:因數和倍數是相互依存的,不能單獨存在)

  6、師:下面,請同學們看這個式子,說一說誰是誰的倍數,誰是誰的因數。(課件出示:4×5=20xx÷3=53+6=96-4=20.3×2=0.6)

  生回答后,引導生知道:通過后三個算式使生進一步理解,倍數和因數都是建立在乘法或除法的基礎之上的,他們的研究范圍在非零自然數中。

  7、你能根據上面所寫的乘法算式或除法算式說出36的所有因數嗎?

  師;那么你知道怎樣找一個數的所有因數呢?(同桌商討后,指名回答,課件出示。)

  找一個數的所有因數時,可以先寫出用這個數作積的所有乘法算式,或者寫出用這個數作被除數的所有除法算式,再寫出它的所有因數。注意,最好按照順序從小到大來寫,這樣不容易遺漏。

  8、師:現(xiàn)在,我們來練習一下。同學們分組有序的找出15、16、24、25的所有因數嗎?打開練習本,快速的寫出來,開始。(師巡視指導困難學生)

  寫完后生匯報,并說出你是怎樣找出它們的因數的,課件出示

  9、引導歸納概括一個數的因數的特點

  師:看來同學們已經充分掌握了找一個數因數的方法,觀察剛才我們找的這些數的因數,你有什么發(fā)現(xiàn)嗎?(出示合作學習要求和目的)下面請小組合作,仔細觀察、比較我們找出的這些數的因數,你從這幾個例子中發(fā)現(xiàn)了什么?請把你的發(fā)現(xiàn)和小組的成員說一說,注意:當一個同學在說的時候,其他成員一定要認真聽,不要打斷別人的發(fā)言,開始。

  引導學生發(fā)現(xiàn):一個非0自然數,最小的因數是1,最大的因數是它本身。一個數的因數個數是有限的

 �。ǘ┱乙粋€數的倍數

  1、師:找了這么多數的因數,現(xiàn)在我們來找一個數的倍數,好不好?

  (課件出示例2)

  生寫,師巡視。

  2、指明匯報后,并說出你是如何找一個數的倍數的?

  3、師:同學們,看來一個數的倍數真的是找不完啊,誰能說一說如何找一個數的倍數?

  歸納(出示找一個數的倍數的方法):找一個數的倍數從它本身開始,用非零自然數1,2,3···去乘,就可以得到。

  那請大家觀察這些數的倍數,你又能發(fā)現(xiàn)什么呢?同桌兩個先互相說一說,開始吧。

  生發(fā)言。

  4、引導學生發(fā)現(xiàn):一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。(課件出示)

  三、回歸課本

  師;同學們認識了倍數和因數,探索了因數和倍數的特點,并且能正確求一個數因數和倍數的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。

  四、學以致用(課件出示)

  剛才我們在數學王國里學習了這么多有趣的數學知識,現(xiàn)在一起來挑戰(zhàn)幾道題,看看你們是否真正的掌握了,好不好?

  五、小結:這節(jié)課同學們通過自己的努力又發(fā)現(xiàn)了數學海洋里的新知識,真讓老師感到開心,在我們今后的學習中希望大家繼續(xù)帶著這些熱情和精神去探索、去發(fā)現(xiàn)。

  六、作業(yè):書本127頁練習二十1、2、3題(課件出示)

  板書設計:

  因數和倍數

 �。ǚ橇阕匀粩抵校�

  1×36=36 36÷1=36 36÷36=1

  2×18=36 36÷2=18 36÷18=2

  3×12=36 36÷3=12 36÷12=3

  4×9=36 36÷4=9 36÷9=4

  6×6=36 36÷6=6

  36的因數有:1、2、3、4、6、9、12、18、36.

因數和倍數教案14

  教學內容:國標版教材四年級下冊第70頁--72頁倍數和因數,想想做做第2,3題。

  教學目標:

  知識和技能方面:

  1、讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發(fā)現(xiàn)一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。

  情感與態(tài)度方面:

  2、讓學生初步意識到可以從一個新的角度來研究非零的自然數的特征及其相互關系,培養(yǎng)學生的觀察、分析和抽象概括的能力,體會數學內容的奇妙、有趣,產生對數學的好奇心。

  教學重點:倍數和因數的意義的理解和掌握。

  教學難點:找一個數的倍數和因數的方法。

  教學過程:

  一、解決問題,引入新授

  1、你們學校有冬季運動會嗎?現(xiàn)在體育老師有個數學問題需要你們幫忙解決,愿意嗎?(課件出示例題)

  體育老師要將12名女生分組訓練跳繩,要求每組人數相同,可以怎樣分?

 �。▽W生讀題,指名說說解決問題的方案,不完整的再補充,共有6種)

  提問:你能用乘法算式將這幾種方案表示出來嗎?

 �。ㄖ该诖�,教師進行整理,有序用課件呈現(xiàn):1×12=122×6=123×4=12)

  在學生口答時說明:1×12=1212×1=12用一道算式1×12=12來表示。

  請學生總結各個算式表示的方案。

  2、教學倍數和因數的意義

  1)、揭示課題

  教師指著3×4=12

  提問:這是一道什么算式?(整數乘法)

  這道算式向學生說明:根據3×4=12我們今天要學習一個新知識--倍數和因數。(板書出示課題:倍數和因數)

  課件出示:根據3×4=12可以說12是3的倍數,12也是4的倍數,4和3都是12的因數。

 �。ㄖ该晃粚W生復述,再全班齊說)

  提問:你能根據1×12=122×6=12這兩個算式和你的同桌照樣子說說誰是誰的倍數,誰是誰的因數嗎?

  (再指名說,注意傾聽學生發(fā)言)

  2)、你能在小組內舉一些這樣的算式,讓其他的同學照樣子說一說誰是誰的倍數,誰是誰的因數嗎?

 �。ㄋ娜诵〗M進行交流,教師巡視進行指導,再指名全班2-3人說一說)

  注意捕捉學生發(fā)言中的錯誤引出,或由教師出示“100×20=20xx所以20xx是倍數,100和20是因數”請學生判斷。倍數和因數相互依存的關系,即甲數是乙數的倍數,那么乙數必定是甲數的因數;

  3)課件出示:為了方便,我們在研究倍數和因數時,所說的一般指不是0的自然數。

  二、探索找一個數的倍數

  掌握了倍數和因數的意義,我們要來學習怎樣找一個數的倍數了。

  1、出示例題:你能找出多少個3的倍數?(指名讀題)

  出示:“3的倍數有:“

  提問:3的倍數有哪些?

 �。ㄖ该f,教師板書)

  提問:你是怎樣找到這個數的倍數的?

  (教師隨機指著3的兩個倍數提問,并相應板書算式)

  最后整理完成板書:3×1=33×2=63×3=93×4=123×5=15

  說明:從你們的回答中,老師明白了3的倍數應該是3與一個數相乘的積;找3的倍數時,可以按從小到的順序,依次用1、2、3------與3相乘,是嗎?

  提問:你能按從小到大的順序有條理的說出3的倍數嗎?

  學生在找3的倍數時已經感覺找不完,那么老師追問:你能把3的倍數全找完嗎?所以后面就用”------“表示,一般情況下寫出5個就可以了。

  板書添上”------“

  2、小結

  你能說說我們是怎樣來找3的倍數的嗎?(學生如又困難,可以同桌間先說一說)

 �。ㄕ�3的倍數時,可以按從小到的順序,依次用1、2、3------與3相乘,而每次乘得的積都是3的倍數)

  那么你能以此類推說說怎樣找其他的數的倍數嗎?(指名學生說,可以舉例)

  小結:找一個數的倍數,可以按從小到的順序,依次用1、2、3------與這個數相乘,而每次乘得的積都是這個數的倍數

  3、”試一試“:(任選其中兩題完成)

  出示:2的倍數有:

  5的倍數有:

  7的倍數有:

  9的倍數有:

 �。ㄒ髮W生任選其中兩題進行練習,速度快的.同學可以完成剩余的題目)

 �。ㄍ队俺鍪緦W生的作業(yè),集體訂正)

  提問:誰能選擇一題說一說,你是怎樣來找這個數的倍數的?

  4、發(fā)現(xiàn)特征

  課件出示:3的倍數有:3,6,9,12,15------

  2的倍數有:2,4,6,8,10------

  5的倍數有:5,10,15,20,25-----

  7的倍數有:7,14,21,28,35------

  9的倍數有:9,18,27,36,45------

  提問:觀察上面幾個例子,你能發(fā)現(xiàn)這些數的倍數有什么共同的特點嗎?將你的發(fā)現(xiàn)告訴小組同學。

 �。ㄋ娜诵〗M進行討論,指名兩人說一說,并用課件突出重點顯示)

 �。〒渥綄W生發(fā)言中有用的話,如:“最小的倍數”,“后面都有省略號”等等)

  教師再用課件出示:一個數的倍數的個數是無限的,一個數最小的倍數是它本身,沒有最大的倍數。

  學會找一個數的倍數了,下面我們要學什么呢?

  三、探索找一個數的因數

  1、出示:你能找出36所有的因數嗎?

  提問:你能聯(lián)系前面所學知識,想一想怎樣來找36的因數嗎?會的同學在小組內說說你的想法!

 �。ㄋ娜诵〗M進行討論,教師巡視認真傾聽并加以指導,再分別指名不同方法進行介紹)

  根據班級實際情況選擇學生共同認可的方法(乘法或除法)進行教學:

  1)、“乘法找”:指名說一說你是怎樣來找36的因數的?教師將其方法進行整理板書:

  板書:36的因數有:1,2,3,4,6,9,12,18,36。(根據算式,一對一對的寫)

  1×36=36

  2×18=36

  3×12=36

  4×9=36

  6×6=36追問:找完了嗎?

  提問:你認為怎樣才能不重復,不遺漏的找出36所有的因數?

  (指名回答,板書強調:有序)

  注意提醒學生再寫的時候也要一對一對的來寫。

  提問:怎樣利用乘法來找一個數的因數?

 �。ɡ贸朔ㄋ闶�,按一個因數從小到大的順序,一組一組的找,兩個乘數就是積的因數)

  2)、“除法找”若有學生提出就讓學生說說想法,若沒有學生提出那么老師就提出來做一個相應的介紹,用36依次去除以1,2,3,等能被它整除的數。

  出示:36÷1=36

  36÷2=18

  36÷3=12

  36÷4=9

  36÷6=6

  36的因數有:1,2,3,4,6,9,12,18,36。

  提問:怎樣用除法來找一個數的因數呢?

  (利用除法算式,按除數從小到大的順序,一組一組的找,除數和商都是被除數的因數)

  2、小結

  你能根據我們找36的因數的過程來說一說找一個數的因數的方法嗎?

  學生根據自己的實際情況選擇適合自己的方法進行總結,教師加以補充和肯定。

  3、“試一試”(任選其中兩題完成)

  15的因數有:

  16的因數有:

  18的因數有:

  24的因數有:

  (要求學生任選其中兩題進行練習,速度快的同學可以完成剩余的題目)

  (投影出示學生的作業(yè),集體訂正,任選兩題說說是怎樣來想的)

  4、發(fā)現(xiàn)特征

  課件出示:

  36的因數有:1,2,3,4,6,9,12,18,36。

  15的因數有:1,3,5,15。

  16的因數有:1,2,4,8,16。

  18的因數有:1,2,3,6,9,18。

  24的因數有:1,2,3,4,6,8,12,24

  提問:觀察上面幾個例子,你發(fā)現(xiàn)這些數的倍數有什么共同的特點?

  (四人小組進行討論,指名兩人說一說,并用課件突出重點顯示)

  若學生說的正確,隨即表揚,并請學生閱讀“數學知識庫”中的相關內容,再指名讀一讀,教師再用課件出示:一個數的因數的個數是有限的,一個數最小的因數是1,最大的因數是它本身。

  5、掌握了一個數的倍數和因數的特點后老師要考考你們了!

  課件提問:一個數既是12的因數,又是12的倍數,這個數是()。

  四、鞏固練習(試時間而定,留做課堂練習)

  1、完成“想想做做”第2題,學生先看題目。

  提問:誰能說說從表格中你知道了什么?

 �。▽W生獨立完成填寫,全班匯報交流)

  提問:表中的“應付元數”都是4的倍數嗎?4的倍數還有哪些?

  2、完成“想想做做”第3題,學生先看題目。

  提問:怎樣來求每排的人數?

 �。▽W生獨立完成填寫,全班匯報交流)

  提問:排數都是24的因數嗎?每排的人數呢?你是怎樣想的?

  五、課堂總結

  誰能說一說在這節(jié)課上你都知道了哪些有關倍數和因數的知識?

因數和倍數教案15

  教學目標

  1、知識與技能

  掌握因數、倍數的概念,知道因數、倍數的相互依存關系。

  2、過程與方法

  通過自主探究,使學生學會用因數、倍數描述兩個數之間的關系。

  3、情感態(tài)度與價值觀

  使學生感悟到數學知識的內在聯(lián)系的邏輯之美。

  教學重難點

  教學重點

  掌握找一個數的因數、倍數的方法。

  教學難點

  能熟練地找一個數的因數和倍數。

  教學工具

  課件、投影

  教學過程

  一、遷移引入

  同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:佳爸是佳佳的爸爸,佳佳是佳爸的兒子。其實在我們的數學王國里,數與數回見也存在著這種相互依存的關系,請看大平米,認識這些嗎?(課件出示:0,1,2,3,4,5……)

  這些自然數。(課件去“0”)

  去0后這又是什么數?(非零自然數中。)這節(jié)課我們就在非零自然數中來研究數與數之間的這種相互依存的關系。

  板書:因數和倍數

  二、情境創(chuàng)設,探究新知

  1、理解整除的意義。

  (1)出示例1,在前面學習中,我們見過下面的算式。

  12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8

  26÷8=3.25 20÷10=2 21÷21=1 63÷9=7

  你能把這些算式分類嗎?

  (2)分類所得:

  第

  一

  類

  12÷2=6 20÷10=2

  30÷6=5 21÷21=1

  63÷9=7

  第

  二

  類

  8÷3=2……2 9÷5=1.8

  19÷7=2……5 26÷8=3.25

  (3)觀察發(fā)現(xiàn),合作交流。

  觀察算式,說一說誰是誰的倍數,誰是誰的約數。

  2、理解因數、倍數的意義。

  12÷2=6中,我們就說12是2的倍數,2是12的因數。12÷6=2,所以12是6的倍數,6是12的因數。由此可知:(在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的'因數。)

  3、總結歸納

  (1)在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。

  (2)因數與倍數是相互依存的關系。

  4、注意:

  為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括0)。

  5、做一做。

  下面的4組數中,誰是誰的因數?誰是誰的倍數?

  4和24 36÷13 75÷25 81÷9

  6、教學例2

  18的因數有哪幾個?

  18的因數有1、2、3、6、9、18。

  也可以這樣用圖表示。

  18的因數

  1,2,3,

  6,9,18

  30的因數有哪些?36呢?

  7、教學例3

  2的倍數有哪些?

  2的倍數有2、4、6、8……

  2的倍數

  2,4,6,

  8,10,12,

  14,……

  3的倍數有哪些?5呢?

  8、小組討論,歸納總結

  一個數的最小因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。

  一個數的因數的個數是有限的,一個數的倍數的個數是無限的。

  課后小結

  一個數的最小因數是有限的,其中最小的因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。

  一個數的因數的個數是有限的,最大的因數是它本身。一個數的倍數的個數是無限的。

  課后習題

  1、填空。

  (1)36是4的( )數。

  (2)5是25的( )。

  (3)2.5是0.5的( )倍。

  2、下面各組數中,有因數和倍數關系的有哪些?

  (1)18和3 (2)120和60 (3)45和15 (4)33和7

  3、24和35的因數都有哪些?

  板書

  一個數的最小因數是有限的,其中最小的因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。

  一個數的因數的個數是有限的,最大的因數是它本身。一個數的倍數的個數是無限的。

《.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【因數和倍數教案】相關文章:

因數和倍數教案02-21

公倍數和公因數教案07-18

《倍數與因數》教案03-14

因數和倍數教學反思07-17

因數和倍數教學反思02-07

《因數和倍數》教學反思02-06

倍數和因數的教學反思03-13

《倍數和因數》教學反思04-11

因數和倍數的教學反思02-14

《因數與倍數》小學教案03-01

【合集】因數和倍數教案15篇

  作為一名辛苦耕耘的教育工作者,很有必要精心設計一份教案,教案有助于學生理解并掌握系統(tǒng)的知識。快來參考教案是怎么寫的吧!下面是小編收集整理的因數和倍數教案,希望能夠幫助到大家。

【合集】因數和倍數教案15篇

因數和倍數教案1

  教學目標:

  1、通過動手操作和寫不同的乘法算式,認識倍數和因數。

  2、依據倍數和因數的含義和已有的乘除法知識,自主探索并總結找一個數的倍數和因數的方法。

  3、在探索中,培養(yǎng)學生抽象,概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。

  教學重點、難點分析:

  由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確了一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節(jié)課的教學我把重點定位于理解因數和倍數的含義。教學難點是自主探索并總結找一個數的倍數和因數的方法。

  教學課時:

  人教版五年級下冊第二單元《因數與倍數》第一課時

  教具學具準備:

  1、學生每人準備12個大小完全相同的小正方形,一張寫有自己學號的卡片。

  2、教師準備多媒體課件。

  教學過程:

一、創(chuàng)設情景,明確探究目標

  師:人與人之間存在著許多種關系,我和你們的.關系是……?

  生:師生關系。

  師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節(jié)課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)

  1、操作激活。

  師:我們已經認識了哪幾類數?

  生:自然數,小數,分數。

  師:現(xiàn)在我們來研究自然數中數與數之間的關系。請你們用12個小正方形擺成不同的長方形,并根據擺成的不同情況寫出乘、除算式。

  2、全班交流。

  1×12=12、2×6=12、3×4=12

  12×1=12、6×2=12、4×3=12

  12÷1=12、12÷2=6、12÷3=4

  12÷12=1 、12÷6=2、12÷4=3

  師:在這3組乘、除法算式中,都有什么共同點?

  生匯報。

  師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?請看課本p12。

  師:2和6與12的關系還可以怎樣說呢?

  生:2和6是12的因數,12是2的倍數,也是6的倍數。

  師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?

  小組合作,交流匯報。

  師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。

  揭示課題:今天我們要根據這些算式研究數學新本領。因數和倍數。

  師:你能不能用同樣的方法說說另一道算式?

 �。ㄖ该f一說)

  師:你有沒有明白因數和倍數的關系了?

  那你還能找出12的其他因數嗎?

  3、舉例內化:

  你能寫出一個算式,讓你的同桌找一找因數和倍數嗎?(學生互說,教師巡視找出典型例子)

  4、下面的說法對嗎?說出理由。

 �。�1)48是6的倍數。

 �。�2)在13÷4=3……1中,13是4的倍數。

  (3)因為3×6=18,所以18是倍數,3和6是因數。

  師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。

  生:因為沒有說明18是誰的倍數,所以不對。

  師:你認為怎樣說才正確呢?

  生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。

  師強調:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。

  二、自主探究,找因數和倍數

  1、拓展提升,主動建構:

  ⑴遷移嘗試:請學生試著找出36的所有因數。

 �、平涣鞣椒ǎ航處熂磿r捕捉開發(fā)學生在課堂上的基礎性教學資源,并及時創(chuàng)生為生成性的教學資源,引導學生在交流中評價,在評價中探究,在發(fā)現(xiàn)中建構。預計學生會有這樣幾種情況出現(xiàn):一是寫得多與少的區(qū)別,二是找的方法上的區(qū)別。具體表現(xiàn)為:一是無序、沒有方法地寫出了一些,如2,3,6,而且僅此寫出了幾個;二是有順序地用乘法( )×( )=36的方法,一對一對地寫出了1,36,2,18,3,12,4,9,6,但沒有按照從小到大的順序寫;三是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫出: 1,2,3,4,6,9,12,18,36。

 �、菃⒌纤伎迹涸鯓诱也拍懿恢貜筒贿z漏?

 �、仍囈辉囌�20的所有因數。

 �、山榻B36的因數的另一種寫法————集合

  用集合形式寫18的因數

  2、創(chuàng)設情境,自主探究:

  3、遷移內化,自主探究:

 �、艊L試遷移:請學生嘗試遷移,用自己喜歡的方法寫出2的倍數和5,4,7的倍數。

  2的倍數有:2,4,6,8,10,12……

  5的倍數有:5,10,15,20,25……

 �、埔龑в^察:請學生觀察以上這些數的倍數,有什么發(fā)現(xiàn)?

 �。ㄒ粋€數的倍數的個數是無限的,一個數最小的倍數是它本身。)

 �。�3)還記得因數嗎,出示課件

  觀察:看一看這些數的因數,你有什么發(fā)現(xiàn)?(36最小的因數是1,最大的是36,……一個數最小的因數是1,最大的因數是它本身。)

  三、變式拓展,實踐應用

  指導學生做書本“練習二”的第2題和第3題。

  四、全課總結

  師:今天這節(jié)課我們一起學習了“約數和倍數”,你有哪些收獲?

  課堂練習:游戲:“我的朋友在哪里?”

  游戲規(guī)則:

 �。�1)一位同學提出所要找的朋友的要求,例:“我的因數在哪里?”或“我的倍數在哪里?”

 �。�2)相應學號的同學站起來,其他同學判斷是否正確。

  作業(yè)安排:

  引導學生根據實際猜老師年齡,給出范圍:老師的年齡既是2的倍數也是5的倍數

因數和倍數教案2

  教學目標

  1.創(chuàng)設多種練習的情境,使學生在掌握找一個數的倍數和因數方法的基礎上,能正確、靈活地按要求找出相應的倍數和因數,并初步體會公倍數、公因數的含義。

  2.在練習、交流、討論、辨析等過程中,培養(yǎng)學生的觀察、分析和抽象概括能力。

  3.使學生在探索學習的過程中,主動與他人合作、交流,獲得一些成功的體驗,培養(yǎng)對數學學習的興趣。

  重點難點

  掌握倍數和因數的概念;初步體會公倍數、公因數的含義

  教學準備

  小黑板。

  教學過程

  過程目標

  教師活動

  學生活動

  教學反思

  復習導入

  復習倍數和因數有關的知識,為今天的練習課做好準備。

  1.出示:12×5=60

  設問:哪個數是哪個數的倍數,哪個數是哪個數的因數?能不能說5是因數或60是倍數?

  2.小黑板出示:25的因數有

  6的倍數有

  完成后組織反饋方法。

  1.個別說一說。

  2.獨立寫,一生板演,完成后小組里交流方法。

  教學環(huán)節(jié)

  過程目標

  教師活動

  學生活動

  教學反思

  二

  鞏固練習

  按要求寫出一個數的倍數和因數,著重練習寫一個數的倍數和因數的方法.第五題要注意6的倍數不應該大于40,7的倍數只要寫幾個再標上省略號。

  讓學生按要求找出相應的數,并初步體會公倍數和公因數的含義。

  使學生感受到數學知識之間的內在聯(lián)系,發(fā)展數學思考。

  1.基本練習:書本想想做做4。

  布置要求,組織填寫。

  組織交流反饋。

  設問:從小到大寫5個,需要把所有的倍數全部寫出來嗎?

  就體小結:一個數的因數的個數是有限的,所以寫一個數的因數時要全部寫出來;而一個數的倍數的'個數是無限的,按要求寫出5個,就不用寫省略號。

  2.書本想想做做5:

  布置要求,巡視。組織交流反饋。

  歸納:40以內6的倍數不需要把所有6的倍數全部寫出來

  3.深化練習:書本想想做做6和7:

  布置要求,巡視檢查。

  組織校對方法。

  小結方法:24既是4的倍數,又是6的倍數;2、3、6、同時是12和8的因數。

  4.拓展練習:

  書本73頁思考題:引導審題,布置練習,組織反饋。

  1.獨立在書上完成,指名4個學生在黑板上板書。

  仔細傾聽。

  2.獨立在書上完成,指名3個學生在黑板上板書。并請個別學生交流反饋方法。

  3.按要求說出答案并交流反饋。

  4.獨立審題,小組交流反饋想法。

  這節(jié)課學生的書寫上還有點不過關,例如“從小到大寫5個”有的人把所有的情況都寫出來了,關鍵在寫倍數和因數的時候要看清題目要求.

  1.設問:這節(jié)課你學到了什么?

  2.布置作業(yè):補充練習相關練習。

  1.個別交流。

  2.獨立作業(yè)。

  板書設計:因數和倍數練習

 �。▽W生板演略)

因數和倍數教案3

  教學目標:

  知識與技能、過程與方法:

  1、從操作活動中理解因數和倍數的好處,會決定一個數是不是另一個數的因數或倍數。

  情感態(tài)度與價值觀:

  2、培養(yǎng)學生抽象、概括的潛力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。

  3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數學學習的情感。

  教學重、難點:

  1、理解因數和倍數的含義。

  2、學會求一個數的因數或倍數的方法。

  教學準備:

  課件

  教學過程設計:

  一、創(chuàng)設情境,引入新課

  師:人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?

  生:父子(父母、母子、母女)關系。

  師:我和你們的關系是?

  生:師生關系。

  師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節(jié)課,我們一齊探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)

  二、探究新知

 �。ㄒ唬⿲W習因數和倍數的概念

  1、出示主題圖,讓學生各列一道乘法算式。

  2、師:看你能不能讀懂下面的算式?

  出示:因為26=12

  所以2是12的因數,6也是12的因數;

  12是2的倍數,12也是6的倍數。

  3、師:你能不能用同樣的方法說說另一道算式?

  (指名生說一說)

  4、師:你有沒有明白因數和倍數的關系了?

  那你還能找出12的其他因數嗎?

 �。ǘ�、學習求一個的因數或倍數的方法。

  A、找因數:

  1、出示例1:18的因數有哪幾個?

  從12的因數能夠看得出,一個數的因數還不止一個,那我們一齊找找看18的因數有哪些?

  學生嘗試完成:匯報

  (18的.因數有:1,2,3,6,9,18)

  師:說說看你是怎樣找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)

  師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

  2、用這樣的方法,請你再找一找36的因數有那些?

  匯報36的因數有:1,2,3,4,6,9,12,18,36

  師:你是怎樣找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫能夠嗎?為什么?(不能夠,因為重復的因數只要寫一個就能夠了,所以不需要寫兩個6)

  仔細看看,36的因數中,最小的是幾,最大的是幾?

  看來,任何一個數的因數,最小的必須是(),而最大的必須是()。

  3、你還想找哪個數的因數?(18、5、42)請你選取其中的一個在自練本上寫一寫,然后匯報。

  4、其實寫一個數的因數除了這樣寫以外,還能夠用集合表示。

  小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

  從最小的自然數1找起,也就是從最小的因數找起,一向找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  B、找倍數:

  1、我們一齊找到了18的因數,那2的倍數你能找出來嗎? 匯報:2、4、6、8、10、16、

  師:為什么找不完

  你是怎樣找到這些倍數的(生:只要用2去乘1、乘2、乘3、乘4、)那么2的倍數最小是幾最大的你能找到嗎

  2、讓學生完成做一做1、2小題:找3和5的倍數。

  匯報3的倍數有:3,6,9,12

  改寫成:3的倍數有:3,6,9,12,你是怎樣找的?(用3分別乘以1,2,3,倍)

  5的倍數有:5,10,15,20,師:表示一個數的倍數狀況,除了用這種文字敘述的方法外,還能夠用集合來表示

  2的倍數3的倍數5的倍數

  師:我們明白一個數的因數的個數是有限的,那么一個數的倍數個數是怎樣樣的呢?

 �。ㄒ粋€數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)

  三、課堂小結

  我們一齊來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

  板書設計:

  因數與倍數

  因數與倍數指的是數與數之間的關系。

  一個數因數的個數是有限的,最小的因數是1最大的因數是它本身。

  一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

  教學反思:

  教材上,探究因數這部分的例題比較少,只有一個:找18的因數。根據學生的實際狀況,我進行了重組教材,先讓學生根據乘法算式一對對地找出15的因數,在此基礎上再讓學生探究18的因數。透過質疑:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發(fā)現(xiàn):按照必須的順序一對對的找因數,能既找全又不遺漏。進而又借助體態(tài)語言打手勢,讓學生說出30和36的因數,到達了鞏固練習的目的。又明確了像36當兩個因數相等時,只寫其中的一個6。這樣設計由易到難,由淺入深,貼合了學生的認知規(guī)律。

因數和倍數教案4

  教學內容:

  蘇教版義務教育教科書《數學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。

  教學目標:

  1.使學生認識倍數和因數,能判斷兩個自然數間的因數和倍數關系;學會找一個數的因數和倍數的方法,能按順序找出100以內自然數的所有因數,10以內自然數的所有倍數;了解一個數的因數、倍數的特點。

  2.使學生經歷探索求一個數的因數或倍數的'方法、一個數的因數和倍數特點的過程,體會數學知識、方法的內在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數感。

  3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數學的信心,養(yǎng)成樂于思考、勇于探究等良好品質。

  教學重點:

  認識因數和倍數。

  教學難點:

  求一個數的因數、倍數的方法。

  教學準備:

  小黑板、準備12個同樣大的正方形學具。

  教學過程:

  一、操作引入,認識意義

  1.操作交流。

  引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。

  交流:你有哪些拼法?請你說一說,并交流你表示的算式。

  結合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。

  2.認識意義。

  (1)說明:我們先看43=12。根據43-12,我們就可以說:4和3都是12的因數;反過來,12是4的倍數,也是3的倍數。

 �。�2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的倍數嗎?同桌互相說說看。

 �。�3) 小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是O的自然數。

因數和倍數教案5

  教學目標:

  1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數和因數的意義;探索求個數的倍數和因數的方法,發(fā)現(xiàn)一個數倍數和因數的某些特征。

  2、在探索一個數的倍數和因數的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。

  3、通過倍數和因數之間的互相依存關系使學生感受數學知識的內在聯(lián)系,體會到數學內容的奇妙、有趣。

  教學重點:理解倍數和因數的意義。

  教學難點:探索求一個數的倍數和因數的方法。

  教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。

  設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數學思考的方法。

  教學過程:

  一、智力競猜 引入新課

  1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)

  2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。

  3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向學生說明自然數中某兩個數之間也有這種類似的依存關系倍數和因數。

  設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊。

  二、操作發(fā)現(xiàn) 理解概念

  1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。

  2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向學生說明:如果一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)

  設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質。

  3、讓學生一起看乘法算式43=12,向學生指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。

  4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。

  5、讓學生仿照說出62=12和121=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。

  6、學生相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。學生可能會出現(xiàn)0( )=0的情況,借此向學生說明我們研究因敷和倍數一般指不是0的自然數。

  設計說明:倍數和因數是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數和因數的認識,同時使學生明確倍數和因數的研究范圍。

  7、以43=12與123=4為例,向學生說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓學生試一試其他幾個除法算式中的關系。

  8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數

  54=20 357=5 3+4=7

  (1)學生回答后引發(fā)學生思考:能不能說20是倍數,4是因數。使學生進一步理解倍數是兩個數之間的一種相互依存的關系,必須說哪個是哪個的倍數,因數也同樣如此。

  (2)通過3+4=7使學生進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。

  設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。

  三、探索方法 發(fā)現(xiàn)特征

  1、找一個數的因數。

  (1)聯(lián)系板書的乘除法算式觀察思考12的因數有哪些,井想辦法找出15的所有因數。

  (2)學生獨立思考,明白根據一個乘法(除法)算式可以找出15的兩個因數,在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數。

  (3)用一對一對的方法找出36的所有因數�?赡苡械膶W生根據乘法算式找的,也有的學生是根據除法算式找的,都應該給予肯定。

  (4)引導學生觀察12、15、36的因數,說一說有什么發(fā)現(xiàn)。一個數的因數個數是有限的,其中最小的因數都是1,最大的都是它本身。

  設計說明:先安排學生找一個數的'因數可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。學生交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數的因數的某些特征。

  2、找一個數的倍數。

  (1)讓學生找3的倍數,比一比誰找得多。

  (2)學生匯報后,引導學生有序思考,并得出3的倍數可以用3乘連續(xù)的自然數1、2、3,3的倍數的個數是無限的,所以寫3的倍數時要借助省略號表示結果。

  (3)找出2的倍數和5的倍數,并引導學生觀察3、2、5的倍數情況,說一說有什么發(fā)現(xiàn)。一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。

  設計說明:讓學生比一比誰找的倍數多,可以使學生產生認知沖突,認識到一個數的倍數個數是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數倍數的特征。

  四、鞏固練習

  師;剛才同學們認識了倍數和因數,并且探索了求一個數因數和倍數的方法,想不想檢查一下自己掌握得如何?

  1、想想做做的第l題。學生表述后強調哪個是哪個的倍數(或因數)。

  2、想想做做的第2題。學生填好后引導學生說一說:表中的應付元數其實都是什么?表格中為什么用省略號?

  3、想想做做的第3題。學生填好后引導學生說一說:表格中所有數都是什么?這個表格中為什么沒有省略號?

  4、游戲找朋友。讓學生拿出各自的學號卡片,找出自己學號數的所有因數,使學生發(fā)現(xiàn)每個學號數的因數都在全班的學號數以內;再讓學生找一找自己學號數的倍數,井說一說能不能在全班學號數內部找到一個,還有其他的嗎?

  設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數倍數和因數的方法,以及倍數和因數的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。

  五、自我梳理 探索延伸

  1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。

  2、生活中許多現(xiàn)象與我們學習的倍數和因數的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數是兩位數中最多的,可以方便計算。

  設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數和因數的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數學知識的應用價值。

因數和倍數教案6

  教學內容:教科書第25頁,練習四第5~8題。

  教學目標:

  1、通過練習與對比,使學生發(fā)現(xiàn)和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。

  2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。

  3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數學與生活的聯(lián)系。

  教學過程:

  一、基本訓練

  1、我們已經掌握了找兩個數的公倍數和最小公倍數的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。

 �。ò鍟n題:公倍數和最小公倍數練習)

  2、填空。

  5的'倍數有:( )

  7的倍數有:( )

  5和7的公倍數有:( )

  5和7的最小公倍數是:( )

  3、完成練習四第5題。

 �。�1)理解題意,獨立找出每組數的最小公倍數。

 �。�2)匯報結果,集體評講。

 �。�3)觀察第一組中兩個數的最小公倍數,看看有什么發(fā)現(xiàn)?

  每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?

  (4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)

  在有些情況下,兩個數的最小公倍數是這兩個數的乘積。

  4、完成練習四第6題。

  你能運用上一題的規(guī)律直接寫出每題中兩個數的最小公倍數嗎?

  交流,匯報。

  說說你是怎么想的?

  二、提高訓練

  1、完成練習四第7題。

 �。�1)理解題意,獨立完成填表。

  (2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?

  你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)

  2、完成練習四第8題。

  (1)理解題意。

 �。�2)“每隔6天去一次”是指7月31日去過以后,下一次訓練日期是8月6日�!懊扛�8天去一次”指的是什么呢?

  你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)

  你是怎樣知道的?

  要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)

  三、課堂小結

  通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。

  在小組中互相說說自己本節(jié)課的收獲。

因數和倍數教案7

  第二單元《因數和倍數》

  執(zhí)筆: 審核: 五年級___班 姓名: 20xx年 月 日 教學內容:質數和合數綜合練習

  教學重點:掌握質數、合數、偶數、奇數之間的聯(lián)系和區(qū)別。教學難點:會運用質數和合數解決實際問題。

  課堂練習。

  1、填空:

 �。�1)一個數,如果只有()兩個因數,這樣的數叫做質數。

  (2)一個數,如果除了()還有別的因數,這樣的數叫做合數。(3)20以內的質數有(),其中()是偶數。

  2、判斷:

  (1)所有的質數都是奇數。()(2)所有的`偶數都是合數。()(3)除0外,自然數不是質數就是合數。()(4)兩個質數的和都是偶數。()(5)兩個合數的和都是偶數。()(6)除0和2以外,所有的偶數都是合數。()

  3、分類:

  1,13,27,41,57,61,73,84,95,47,11,15,33,49,51,63,87,99

  質數

  合數

  我發(fā)現(xiàn):________________________________________________________

  4、按要求在括號內填上數字:(1)()比9大比13小的奇數;()是最小的合數。(2)()是100以內最大的質數;()是100以內最大的奇數。(3)()是最小的自然數;()既不是質數也不是合數。

  5、金星小學六年級組織夏令營活動,共有516人參加,每輛客車乘坐人數在40~50人之間,請你幫忙算一算,學校租用幾輛大客車,可以正好使每輛車載的人數相等,每輛車載多少人?

  6、食品店運來42個面包,如果每5個裝一袋能正好裝完嗎?如果每3個裝一袋,能正好裝完嗎?為什么?

因數和倍數教案8

  教學內容:蘇教版(義教課標數學)四下第70-71的例題以和72頁“想想做做”的1-3頁。

  教學目標:

  1、通過操作活動得出相應的乘除法算式,協(xié)助同學理解倍數和因數的意義;探索求—個數的倍數和因數的方法,發(fā)現(xiàn)一個數倍數和因數的某些特征。

  2、在探索一個數的倍數和因數的過程中培養(yǎng)同學觀察、分析、概括能力,培養(yǎng)有序考慮能力。

  3、通過倍數和因數之間的互相依存關系使同學感受數學知識的內在聯(lián)系,體會到數學內容的奇妙、有趣。

  教學重點:理解倍數和因數的意義。

  教學難點:探索求一個數的倍數和因數的方法。

  教學準備:每桌準各12個一樣大小的正方形,每人準備一張自身學號的卡片。

  設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)同學持續(xù)的學習興趣;同學通過獨立考慮、合作文流進行自主探索;教師引導同學掌握數學考慮的方法。

  教學過程:

  一、智力競猜 引入新課

  1、讓同學進行“智力競猜”——春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(局部同學能猜出三個人分別是孫子、爸爸、和爺爺)

  2、孫子、爸爸、爺爺的名字分別是韓韓,韓有才、韓廣發(fā)。請同學以韓有才為中心介紹—下三個人的關系。同學可能會說出“韓有才.是爸爸”,“韓有才是兒子”的語句,這時引導同學說出“誰是誰的爸爸”“誰是準的兒子”。

  3、上述“父子關系”是一種互相依存的關系,在表述時一定要完整。并向同學說明自然數中某兩個數之間也有這種類似的依存關系——倍數和因數。

  設計說明:“智力競猜”走同學喜歡的形式,因為每個同學都有爭強好勝之心,“競猜”有兩個作用,一是激發(fā)同學的學習興趣,二是以此引出“相互依存”的關系,為理解倍數和因數的相互依存關系作鋪墊。

  二、操作發(fā)現(xiàn) 理解概念

  1、師:“‘智慧從手指問流出’,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并考慮一下其中蘊涵著哪些不同的乘除法算式。”

  2、請同學匯報不同的擺法,以和相應的乘除法算式。(乘法算式和除法算式分開寫)再向同學說明:假如一個圖形經過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓同學特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)

  設計說明;讓同學寫出蘊涵的乘除法算式符合同學的知識基礎,同學有的可能用乘法表示,也有的可能用除法表示;讓同學將旋轉后相同的去掉,這是一次簡化,很多同學并不知道,需要指導,這樣可以使同學認識到事物的實質。

  3、讓同學一起看乘法算式4×3=12,向同學指出:12是4的倍數,12也是3的倍數,4是12的因數,3也是12的因數。

  4、先請一個同學站起來說一說.然后同桌的同學再互相說一說。

  5、讓同學仿照說出6×2=12和12×1=12中哪個數是哪個數的倍數,哪個數是哪個數的因數。

  6、同學相互出一道乘法算式,并說一說誰是誰的倍數,誰是誰的因數。同學可能會出現(xiàn)0×( )=0的情況,借此向同學說明我們研究因敷和倍數一般指不是0的自然數。

  設計說明:倍數和因數是全新的概念,需要教師的“傳授、講解”,需要同學的適當“記憶”——重復、仿照。當然,要使同學真正理解還必需舉一反三,通過互相舉例可以逐步完善同學對倍數和因數的認識,同時使同學明確倍數和因數的研究范圍。

  7、以4×3=12與12÷3=4為例,向同學說明后面的除法算式是由前面的乘法算式得到的,根據這個除法算式可以說誰是誰的倍數,誰是誰的因數,說好后再讓同學試一試其他幾個除法算式中的關系。

  8、練習:根據下面的算式,說說哪個數是哪個數的因數,哪個數是哪個數的倍數

  5×4=20 35÷7=5 3+4=7

  (1)同學回答后引發(fā)同學考慮:能不能說20是倍數,4是因數。使同學進一步理解倍數是兩個數之間的一種相互依存的關系,必需說哪個是哪個的倍數,因數也同樣如此。

  (2)通過3+4=7使同學進一步理解倍數和因數都是建立在乘法或除法的基礎之上的。

  設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數和因數的認識,將融會貫通落到實處。

  三、探索方法 發(fā)現(xiàn)特征

  1、找一個數的因數。

  (1)聯(lián)系板書的乘除法算式觀察考慮12的因數有哪些,井想方法找出15的所有因數。

  (2)同學獨立考慮,明白根據一個乘法(除法)算式可以找出15的兩個因數,在同學充沛交流的基礎上引導同學有條理的“一對一對”說出15的因數。

  (3)用“一對一對”的方法找出36的所有因數�?赡苡械耐瑢W根據乘法算式找的,也有的同學是根據除法算式找的,都應該給予肯定。

  (4)引導同學觀察12、15、36的因數,說一說有什么發(fā)現(xiàn)。一個數的因數個數是有限的,其中最小的`因數都是1,最大的都是它自身。

  設計說明:先布置同學“找一個數的因數”可以使同學利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數的因數指明了方向。同學交流時突出了方法的多樣性,既可以根據乘法算式想,也可以根據除法算式想,交流后引導同學“一對一對”的找是必要的,它可以培養(yǎng)同學的有序考慮。最后引導同學觀察。使同學自主發(fā)現(xiàn)、歸納出一個數的因數的某些特征。

  2、找一個數的倍數。

  (1)讓同學找3的倍數,比一比誰找得多。

  (2)同學匯報后,引導同學有序考慮,并得出3的倍數可以用3乘連續(xù)的自然數1、2、3……,3的倍數的個數是無限的,所以寫3的倍數時要借助省略號表示結果。

  (3)找出2的倍數和5的倍數,并引導同學觀察3、2、5的倍數情況,說一說有什么發(fā)現(xiàn)。一個數的倍數個數是無限的,其中最小的倍數是它自身,沒有最大的倍數。

  設計說明:讓同學比一比誰找的倍數多,可以使同學發(fā)生認知抵觸,認識到一個數的倍數個數是無限的,在同學匯報后同樣需要引導同學的有序考慮,需要引導同學自主發(fā)現(xiàn)、歸納一個數倍數的特征。

  四、鞏固練習

  師;剛才同學們認識了倍數和因數,并且探索了求一個數因數和倍數的方法,想不想檢查一下自身掌握得如何?

  1、“想想做做”的第l題。同學表述后強調哪個是哪個的倍數(或因數)。

  2、“想想做做”的第2題。同學填好后引導同學說一說:表中的“應付元數”其實都是什么?表格中為什么用省略號?

  3、“想想做做”的第3題。同學填好后引導同學說一說:表格中所有數都是什么?這個表格中為什么沒有省略號?

  4、游戲——“找朋友”。讓同學拿出各自的學號卡片,找出自身學號數的所有因數,使同學發(fā)現(xiàn)每個學號數的因數都在全班的學號數以內;再讓同學找一找自身學號數的倍數,井說一說能不能在全班學號數內部找到一個,還有其他的嗎?

  設計說明:第l題是基礎練習.可以鞏固對倍數和因數的認識,2、3兩題聯(lián)系實際,使同學感悟到其中蘊藏著求一個數倍數和因數的方法,以和倍數和因數的某些特征。第4題通過游戲活動進一步激發(fā)同學持續(xù)的學習熱情,而且可以綜合應用求倍數和因數的方法,再次認識到倍數和因數的某些特征。

  五、自我梳理 探索延伸

  1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。

  2、生活中許多現(xiàn)象與我們學習的“倍數和因數”的知識有關,課后同學們可以利用今天所學的知識探索一下“1小時等于60分”的好處。通過探索使同學明白由于60的因數是兩位數中最多的,可以方便計算。

  設計說明:“向同伴介紹自身的收獲”可以將課堂中學到的知識進行自我梳理,同時通過探索“1小時等于60分”的好處“,可以鞏固倍數和因數的相關知識,溝通知識間的聯(lián)系,拓展同學的知識面,使同學認識到數學知識的應用價值。

因數和倍數教案9

  人教版小學數學五年級下冊《因數和倍數》

  1、教學目標:

  1、學生掌握找一個數的因數,倍數的方法;

  2、學生能了解一個數的因數是有限的,倍數是無限的;

  3、能熟練地找一個數的因數和倍數;

  4、培養(yǎng)學生的觀察能力。

  2、教學重點:掌握找一個數的因數和倍數的方法。

  3、教學難點:能熟練地找一個數的因數和倍數。

  教學過程:

  一、引入新課。

  1、出示主題圖,讓學生各列一道乘法算式。

  2、師:看你能不能讀懂下面的算式?

  出示:因為2×6=12

  所以2是12的因數,6也是12的因數;

  12是2的倍數,12也是6的倍數。

  3、師:你能不能用同樣的方法說說另一道算式?(指名生說一說)

  師:你有沒有明白因數和倍數的關系了?

  小組討論:兩個數在什么情況下才有因數和倍數關系?我們能不能說“2”是因數,“12”是倍數呢?

  讓學生討論交流,教師歸納總結:因數和倍數是相互依存的,不能單獨存在。注意體會“因數和倍數是相互依存的”是什么意思。

  那你還能找出12的其他因數嗎?

  4、你能不能寫一個算式來考考同桌?學生寫算式。

  師:誰來出一個算式考考全班同學?

  5、師:今天我們就來學習因數和倍數。(出示課題:因數 倍數)

  齊讀p12的注意。

  二、新授:

 �。ㄒ唬┱乙驍担�

  1、出示例1:18的因數有哪幾個?

  從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些?

  學生嘗試完成:匯報

 �。�18的因數有: 1,2,3,6,9,18)

  師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

  師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到------小學資源網投稿電話:0

  QQ:-----

  大排列的。

  2、用這樣的方法,請你再找一找36的因數有那些? 匯報36的因數有: 1,2,3,4,6,9,12,18,36 師:你是怎么找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)

  仔細看看,36的因數中,最小的是幾,最大的是幾?

  看來,任何一個數的因數,最小的一定是(),而最大的一定是()。

  3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

  4、其實寫一個數的.因數除了這樣寫以外,還可以用集合表示:如

  18的因數

  小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

  從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  5.讓學生結合18、36、30的因數個數,思考:一個數的因數的個數是有限的還是無限的?

  小結:一個數的因數的個數是有限的。

 �。ǘ┱冶稊担�

  1、我們一起找到了18的因數,那2的倍數你能找出來嗎? 匯報:2、4、6、8、10、16、…… 師:為什么找不完? 你是怎么找到這些倍數的?(生:只要用2去乘

  1、乘

  2、乘

  3、乘

  4、…)那么2的倍數最小是幾?最大的你能找到嗎?

  2、讓學生完成做一做1、2小題:找3和5的倍數。匯報 3的倍數有:3,6,9,12

  師:這樣寫可以嗎?為什么?應該怎么改呢? 改寫成:3的倍數有:3,6,9,12,……

  你是怎么找的?(用3分別乘以1,2,3,……倍)

  5的倍數有:5,10,15,20,……

  讓學生明確3和5的倍數有無限個,所以我們用“......”來表示。

  師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示

  2的倍數 3的倍數 5的倍數

  師:同學們考慮,5的最小倍數是幾,有沒有最大倍數?3呢?2呢?(總結出一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。)

  三、課堂小結:

  我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

  四、獨立作業(yè):

  ------小學資源網投稿電話:0

  QQ:-----

  板書設計:

  教學反思

  ------小學資源網投稿電話:0 QQ:-----

因數和倍數教案10

  教學目標:

  1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。

  交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。

  3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯(lián)系,提高數學思考的水平。

  教學重點:

  理解因數和倍數的含義,知道它們的關系是相互依存的。

  教學難點:

  探索并掌握找一個數的因數的方法。

  教學準備:

  每個學生的學號紙。

  教學過程設計:

一、認識倍數、因數的含義

  1、操作活動。

 �。�1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。

 �。ń涣鳎謩e板書4×3=1212×1=126×2=12

  2、通過剛才的學習,我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。

  3、今天我們就來研究倍數和因數的知識。

 �。ń沂菊n題:倍數和因數)

 �。�1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?

  指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?

  小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。

 �。�2)出示:20×3=60,36÷4=9。同桌相互說一說誰是誰的倍數?誰是誰的因數?

  指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。

  二、探索找一個數倍數的方法。

  1、從4×3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。

  2、提問:什么樣的數是3的倍數?你能按從小到大的順序有條理的說出3的倍數嗎?能全部說完嗎?可以怎么表示?

  3、議一議:你發(fā)現(xiàn)找3的倍數有什么小竅門?

  明確:可以按從小到大的順序,依次用3……與3相乘,乘得的積就是3的倍數。

  4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?

  生獨立完成,集體交流。注意用……表示結果。

  5、觀察上面的3個例子,你發(fā)現(xiàn)一個數的倍數有什么特點?

  根據學生的交流歸納:一個數的倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。

  6、做“想想做做”第2題。

  學生填表后討論:表中的應付元數是怎么算的?有什么共同特點?你還能說出4的哪些倍數?說的完嗎?

  二、探索求一個數因數的方法。

  1、學會了找一個數倍數的方法,再來研究求一個數的因數。

  你能找出36的所有因數嗎?

  2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的`找法。

  3、出示一份作業(yè):對照自己找出的36的因數,你想對他說點什么?

  板書:(有序、全面)。正因為思考的有序,才會有答案的全面。

  5、試一試:請你用有序的思考找一找15和16的因數。

  指名寫在黑板上。

  6、觀察發(fā)現(xiàn)一個數的因數的特點。

  一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。

  7、“想想做做”第3題。

  生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。

  四、課堂總結:學到這兒,你有哪些收獲?

  五、游戲:“看誰反應快”。

  規(guī)則:學號符合下面要求的請站起來,并舉起學號紙。

 �。▽W號是5的倍數的。

 �。ㄕl的學號是24的因數。

 �。▽W號是30的因數。

  (誰的學號是1的倍數。

  思考:

  1、倍數和因數是一個比較抽象的知識,教學中讓學生擺出圖形,通過乘法算式來認識倍數和因數。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據乘法算式,從學生已有知識出發(fā),學習倍數和因數,初步體會其意義

  2、在得出這些乘法算式以后,先根據4×3=12說明12是3和4的倍數,3和4都是12的因數,使學生初步體會倍數和因數的含義。在學生初

  步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20×3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。

  在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。

  2和5的所有倍數,發(fā)現(xiàn)一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。

  用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。

  ……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。

  為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。

因數和倍數教案11

  教材分析:

  以乘、除法知識拓展方式,引入對“因數與倍數”知識的學習。有利于溝通新舊知識之間的聯(lián)系,分散難點,便于學生理解和掌握知識。

  教學目標:

 �、僭诰唧w的情境中,借助乘法算式認識因數和倍數。

 �、谡莆涨笠粋€數的因數和倍數的方法,知道一個數的因數及倍數的特點。

  重點難點突破:

  為了突出重點、突破難點,特設計以下三個環(huán)節(jié)進行教學:

  ① 以學生的貼畫為素材,通過不同的貼法引出不同的`乘法算式,以乘法算式引出因數

  和倍數的意義。

 �、谝龑W生自主找一個數的因數,以此加深對因數的理解。

  ③引導學生自主找一個數的倍數,以此加深對倍數的理解。

  組內教師討論要點:

  ①找一個數的因數時,一定要放手,且給學生足夠的時間讓他們去同位之間、小組內交流,如何能快速且沒有遺漏的找全。

  ②及時的練習鞏固也是很有必要的,在多個練習的基礎之上讓學生發(fā)現(xiàn)一個數因數的特點。

 �、壅乙粋€數的因數也反映出學生的口算水平的高低。

 �、苷乙粋€數的倍數時,以找2、3、5的倍數為主,讓學生發(fā)現(xiàn)一個數倍數的特征。

因數和倍數教案12

  教學內容:教科書第30頁,練習五第12~14題、思考題。

  教學目標:

  1.通過練習,使學生進一步掌握求兩個數最大公因數和最小公倍數的方法,進行有條理思考。

  2.通過練習,使學生建立合理的認知結構,鍛煉學生的思維,提高解決實際問題的能力。

  教學重點:進一步理解公倍數和公因數的含義,弄清它們的聯(lián)系與區(qū)別。

  教學難點:弄清公倍數和公因數聯(lián)系與區(qū)別。

  教學過程:

  一、揭示課題

  今天我們繼續(xù)完成一些公因數、公倍數的.有關練習。

  二、基礎訓練

  1.寫出36和24的公因數,最大公因數是多少?

  2.寫出100以內10和6的公倍數,最小公倍數是多少?

  學生獨立完成,匯報交流。

  說說自己是用什么方法找到的?

  三、綜合練習

  1.完成練習五第12題。

  誰能說說什么數是兩個數的公倍數?兩個數的公因數指什么?

  在書上完成連線后匯報方法。

  你是怎樣找出24和16的公因數的?你是怎樣找到2和5的公倍數的?

  2.完成第13題。

  獨立完成。交流各自方法。

  3.完成第14題。

  獨立完成。交流各自方法。

  求最大公因數和最小公倍數的方法有什么相同和不同?

  什么情況下可以直接寫出兩個數的最大公因數?什么情況下可以直接寫出兩個數的最小公倍數?

  4.完成思考題。

  (1)小組討論方法。

  (2)指導解法。

  把46塊水果糖分給同學后剩1塊,也就是同學們分了多少塊糖?(46-1)38塊巧克力分給同學后剩3塊,也就是分了多少塊巧克力?(38-3)每種糖都是平均分給這個小組的同學,因此這個小組的人數既是45的因數,又是35的因數。要求小組最多有幾人,就是求45和35的什么?(最大公因數)(45,35)=5因此這個組最多有5名同學。

  5.閱讀“你知道嗎”介紹了我國古代求兩個數的最大公因數的重要方法————輾轉相除發(fā)法,以及用短除法求兩個數的最大公因數和最小公倍數的符號表示方法

  四、課堂

  大家在學習公倍數和公因數這一單元時,首先要明白公倍數和公因數的意義,最大公因數和最小公倍數的意義,其次要掌握找公倍數、公因數、最小公倍數、最大公因數的方法,才能為后面的學習做好準備。

因數和倍數教案13

  教學目標:

  1、理解倍數和因數之間的關系是相互依存的。

  2、根據具體的問題情景,能正確確定某個非零自然數的所有因數。

  3、使學生體味數學的趣味性,激發(fā)學生對數學的探究熱情。

  教學重點:

  理解倍數和因數之間的關系是相互依存的,能正確求一個數的倍數和因數。

  教學難點:

  能正確有序求一個數的倍數和因數。

  教學過程:

  一、遷移引入

  師:同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟??。其實在我們的數學王國里,數與數之間也存在著這種相互依存的關系,請看大屏幕,認識這些數嗎?(課件出示:0,1,2,3,4,5)

  生:自然數。

 �。ㄕn件去“0”)

  師:去0后這又是些什么數?(非零自然數中。)這節(jié)課我們就在非零自然數中來研究數與數之間的這種相互依存的關系,

  板書:因數和倍數

 �。ㄑ芯糠秶悍橇阕匀粩抵校�

  二、探究新知

 �。ㄒ唬┱乙粋€數的因數

  1、(課件出示例1情境圖)

  師:請看大屏幕,這是36人列隊操練,每排人數要一樣多,可以怎樣排列?同學們可以先同桌討論,作好記錄,再匯報。(引導生說:可以站幾排,每排站幾個。)

  根據這些信息我們能列出哪些乘法算是呢?

  板書:1×36=362×18=363×12=364×9=366×6=361

  師:在4×9=36這個算式中,4和9叫什么?(因數)36是?(積),這是我們以前學的乘法各部分名稱。其實,在整數乘法中,因數和積之間還存在一種相互依存的關系,也就是說4是36的因數,36是4的倍數。,同樣,在這個算式中,我們還可以說9是36的?(因數),36是9的`?(倍數)。

  2、誰能像老師這樣,說一說3×12=36他們之間的關系。(先請一個學生站起來說一說)

  3、下面請同桌像剛才一樣互相說一說另外三個算式中(1×36=36 2×18=36 6×6=36)誰是誰的倍數,誰是誰的因數,開始。(師巡視,指導差生)然后指名說一說

  4、你能根據左邊的乘法算式寫出相應的除法算式嗎?(師根據生的回答板書)

  我們現(xiàn)在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數,誰是誰的因數?(說好后再讓學生逐個說出除法算式中的關系)

  5、剛才同學們都說4是36的因數,那能單獨說4是因數嗎?(生發(fā)表意見)

  到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數還是因數?(課件著重強調數字“4”)

  引導學生說:第一個式子中,4是36的因數,第二個式子中4是2的倍數。(課件出示結果)

  師:從剛才的回答中你明白了什么?(引導生知道:因數和倍數是相互依存的,不能單獨存在)

  6、師:下面,請同學們看這個式子,說一說誰是誰的倍數,誰是誰的因數。(課件出示:4×5=20xx÷3=53+6=96-4=20.3×2=0.6)

  生回答后,引導生知道:通過后三個算式使生進一步理解,倍數和因數都是建立在乘法或除法的基礎之上的,他們的研究范圍在非零自然數中。

  7、你能根據上面所寫的乘法算式或除法算式說出36的所有因數嗎?

  師;那么你知道怎樣找一個數的所有因數呢?(同桌商討后,指名回答,課件出示。)

  找一個數的所有因數時,可以先寫出用這個數作積的所有乘法算式,或者寫出用這個數作被除數的所有除法算式,再寫出它的所有因數。注意,最好按照順序從小到大來寫,這樣不容易遺漏。

  8、師:現(xiàn)在,我們來練習一下。同學們分組有序的找出15、16、24、25的所有因數嗎?打開練習本,快速的寫出來,開始。(師巡視指導困難學生)

  寫完后生匯報,并說出你是怎樣找出它們的因數的,課件出示

  9、引導歸納概括一個數的因數的特點

  師:看來同學們已經充分掌握了找一個數因數的方法,觀察剛才我們找的這些數的因數,你有什么發(fā)現(xiàn)嗎?(出示合作學習要求和目的)下面請小組合作,仔細觀察、比較我們找出的這些數的因數,你從這幾個例子中發(fā)現(xiàn)了什么?請把你的發(fā)現(xiàn)和小組的成員說一說,注意:當一個同學在說的時候,其他成員一定要認真聽,不要打斷別人的發(fā)言,開始。

  引導學生發(fā)現(xiàn):一個非0自然數,最小的因數是1,最大的因數是它本身。一個數的因數個數是有限的

 �。ǘ┱乙粋€數的倍數

  1、師:找了這么多數的因數,現(xiàn)在我們來找一個數的倍數,好不好?

  (課件出示例2)

  生寫,師巡視。

  2、指明匯報后,并說出你是如何找一個數的倍數的?

  3、師:同學們,看來一個數的倍數真的是找不完啊,誰能說一說如何找一個數的倍數?

  歸納(出示找一個數的倍數的方法):找一個數的倍數從它本身開始,用非零自然數1,2,3···去乘,就可以得到。

  那請大家觀察這些數的倍數,你又能發(fā)現(xiàn)什么呢?同桌兩個先互相說一說,開始吧。

  生發(fā)言。

  4、引導學生發(fā)現(xiàn):一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。(課件出示)

  三、回歸課本

  師;同學們認識了倍數和因數,探索了因數和倍數的特點,并且能正確求一個數因數和倍數的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。

  四、學以致用(課件出示)

  剛才我們在數學王國里學習了這么多有趣的數學知識,現(xiàn)在一起來挑戰(zhàn)幾道題,看看你們是否真正的掌握了,好不好?

  五、小結:這節(jié)課同學們通過自己的努力又發(fā)現(xiàn)了數學海洋里的新知識,真讓老師感到開心,在我們今后的學習中希望大家繼續(xù)帶著這些熱情和精神去探索、去發(fā)現(xiàn)。

  六、作業(yè):書本127頁練習二十1、2、3題(課件出示)

  板書設計:

  因數和倍數

 �。ǚ橇阕匀粩抵校�

  1×36=36 36÷1=36 36÷36=1

  2×18=36 36÷2=18 36÷18=2

  3×12=36 36÷3=12 36÷12=3

  4×9=36 36÷4=9 36÷9=4

  6×6=36 36÷6=6

  36的因數有:1、2、3、4、6、9、12、18、36.

因數和倍數教案14

  教學內容:國標版教材四年級下冊第70頁--72頁倍數和因數,想想做做第2,3題。

  教學目標:

  知識和技能方面:

  1、讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發(fā)現(xiàn)一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。

  情感與態(tài)度方面:

  2、讓學生初步意識到可以從一個新的角度來研究非零的自然數的特征及其相互關系,培養(yǎng)學生的觀察、分析和抽象概括的能力,體會數學內容的奇妙、有趣,產生對數學的好奇心。

  教學重點:倍數和因數的意義的理解和掌握。

  教學難點:找一個數的倍數和因數的方法。

  教學過程:

  一、解決問題,引入新授

  1、你們學校有冬季運動會嗎?現(xiàn)在體育老師有個數學問題需要你們幫忙解決,愿意嗎?(課件出示例題)

  體育老師要將12名女生分組訓練跳繩,要求每組人數相同,可以怎樣分?

 �。▽W生讀題,指名說說解決問題的方案,不完整的再補充,共有6種)

  提問:你能用乘法算式將這幾種方案表示出來嗎?

 �。ㄖ该诖�,教師進行整理,有序用課件呈現(xiàn):1×12=122×6=123×4=12)

  在學生口答時說明:1×12=1212×1=12用一道算式1×12=12來表示。

  請學生總結各個算式表示的方案。

  2、教學倍數和因數的意義

  1)、揭示課題

  教師指著3×4=12

  提問:這是一道什么算式?(整數乘法)

  這道算式向學生說明:根據3×4=12我們今天要學習一個新知識--倍數和因數。(板書出示課題:倍數和因數)

  課件出示:根據3×4=12可以說12是3的倍數,12也是4的倍數,4和3都是12的因數。

 �。ㄖ该晃粚W生復述,再全班齊說)

  提問:你能根據1×12=122×6=12這兩個算式和你的同桌照樣子說說誰是誰的倍數,誰是誰的因數嗎?

  (再指名說,注意傾聽學生發(fā)言)

  2)、你能在小組內舉一些這樣的算式,讓其他的同學照樣子說一說誰是誰的倍數,誰是誰的因數嗎?

 �。ㄋ娜诵〗M進行交流,教師巡視進行指導,再指名全班2-3人說一說)

  注意捕捉學生發(fā)言中的錯誤引出,或由教師出示“100×20=20xx所以20xx是倍數,100和20是因數”請學生判斷。倍數和因數相互依存的關系,即甲數是乙數的倍數,那么乙數必定是甲數的因數;

  3)課件出示:為了方便,我們在研究倍數和因數時,所說的一般指不是0的自然數。

  二、探索找一個數的倍數

  掌握了倍數和因數的意義,我們要來學習怎樣找一個數的倍數了。

  1、出示例題:你能找出多少個3的倍數?(指名讀題)

  出示:“3的倍數有:“

  提問:3的倍數有哪些?

 �。ㄖ该f,教師板書)

  提問:你是怎樣找到這個數的倍數的?

  (教師隨機指著3的兩個倍數提問,并相應板書算式)

  最后整理完成板書:3×1=33×2=63×3=93×4=123×5=15

  說明:從你們的回答中,老師明白了3的倍數應該是3與一個數相乘的積;找3的倍數時,可以按從小到的順序,依次用1、2、3------與3相乘,是嗎?

  提問:你能按從小到大的順序有條理的說出3的倍數嗎?

  學生在找3的倍數時已經感覺找不完,那么老師追問:你能把3的倍數全找完嗎?所以后面就用”------“表示,一般情況下寫出5個就可以了。

  板書添上”------“

  2、小結

  你能說說我們是怎樣來找3的倍數的嗎?(學生如又困難,可以同桌間先說一說)

 �。ㄕ�3的倍數時,可以按從小到的順序,依次用1、2、3------與3相乘,而每次乘得的積都是3的倍數)

  那么你能以此類推說說怎樣找其他的數的倍數嗎?(指名學生說,可以舉例)

  小結:找一個數的倍數,可以按從小到的順序,依次用1、2、3------與這個數相乘,而每次乘得的積都是這個數的倍數

  3、”試一試“:(任選其中兩題完成)

  出示:2的倍數有:

  5的倍數有:

  7的倍數有:

  9的倍數有:

 �。ㄒ髮W生任選其中兩題進行練習,速度快的.同學可以完成剩余的題目)

 �。ㄍ队俺鍪緦W生的作業(yè),集體訂正)

  提問:誰能選擇一題說一說,你是怎樣來找這個數的倍數的?

  4、發(fā)現(xiàn)特征

  課件出示:3的倍數有:3,6,9,12,15------

  2的倍數有:2,4,6,8,10------

  5的倍數有:5,10,15,20,25-----

  7的倍數有:7,14,21,28,35------

  9的倍數有:9,18,27,36,45------

  提問:觀察上面幾個例子,你能發(fā)現(xiàn)這些數的倍數有什么共同的特點嗎?將你的發(fā)現(xiàn)告訴小組同學。

 �。ㄋ娜诵〗M進行討論,指名兩人說一說,并用課件突出重點顯示)

 �。〒渥綄W生發(fā)言中有用的話,如:“最小的倍數”,“后面都有省略號”等等)

  教師再用課件出示:一個數的倍數的個數是無限的,一個數最小的倍數是它本身,沒有最大的倍數。

  學會找一個數的倍數了,下面我們要學什么呢?

  三、探索找一個數的因數

  1、出示:你能找出36所有的因數嗎?

  提問:你能聯(lián)系前面所學知識,想一想怎樣來找36的因數嗎?會的同學在小組內說說你的想法!

 �。ㄋ娜诵〗M進行討論,教師巡視認真傾聽并加以指導,再分別指名不同方法進行介紹)

  根據班級實際情況選擇學生共同認可的方法(乘法或除法)進行教學:

  1)、“乘法找”:指名說一說你是怎樣來找36的因數的?教師將其方法進行整理板書:

  板書:36的因數有:1,2,3,4,6,9,12,18,36。(根據算式,一對一對的寫)

  1×36=36

  2×18=36

  3×12=36

  4×9=36

  6×6=36追問:找完了嗎?

  提問:你認為怎樣才能不重復,不遺漏的找出36所有的因數?

  (指名回答,板書強調:有序)

  注意提醒學生再寫的時候也要一對一對的來寫。

  提問:怎樣利用乘法來找一個數的因數?

 �。ɡ贸朔ㄋ闶�,按一個因數從小到大的順序,一組一組的找,兩個乘數就是積的因數)

  2)、“除法找”若有學生提出就讓學生說說想法,若沒有學生提出那么老師就提出來做一個相應的介紹,用36依次去除以1,2,3,等能被它整除的數。

  出示:36÷1=36

  36÷2=18

  36÷3=12

  36÷4=9

  36÷6=6

  36的因數有:1,2,3,4,6,9,12,18,36。

  提問:怎樣用除法來找一個數的因數呢?

  (利用除法算式,按除數從小到大的順序,一組一組的找,除數和商都是被除數的因數)

  2、小結

  你能根據我們找36的因數的過程來說一說找一個數的因數的方法嗎?

  學生根據自己的實際情況選擇適合自己的方法進行總結,教師加以補充和肯定。

  3、“試一試”(任選其中兩題完成)

  15的因數有:

  16的因數有:

  18的因數有:

  24的因數有:

  (要求學生任選其中兩題進行練習,速度快的同學可以完成剩余的題目)

  (投影出示學生的作業(yè),集體訂正,任選兩題說說是怎樣來想的)

  4、發(fā)現(xiàn)特征

  課件出示:

  36的因數有:1,2,3,4,6,9,12,18,36。

  15的因數有:1,3,5,15。

  16的因數有:1,2,4,8,16。

  18的因數有:1,2,3,6,9,18。

  24的因數有:1,2,3,4,6,8,12,24

  提問:觀察上面幾個例子,你發(fā)現(xiàn)這些數的倍數有什么共同的特點?

  (四人小組進行討論,指名兩人說一說,并用課件突出重點顯示)

  若學生說的正確,隨即表揚,并請學生閱讀“數學知識庫”中的相關內容,再指名讀一讀,教師再用課件出示:一個數的因數的個數是有限的,一個數最小的因數是1,最大的因數是它本身。

  5、掌握了一個數的倍數和因數的特點后老師要考考你們了!

  課件提問:一個數既是12的因數,又是12的倍數,這個數是()。

  四、鞏固練習(試時間而定,留做課堂練習)

  1、完成“想想做做”第2題,學生先看題目。

  提問:誰能說說從表格中你知道了什么?

 �。▽W生獨立完成填寫,全班匯報交流)

  提問:表中的“應付元數”都是4的倍數嗎?4的倍數還有哪些?

  2、完成“想想做做”第3題,學生先看題目。

  提問:怎樣來求每排的人數?

 �。▽W生獨立完成填寫,全班匯報交流)

  提問:排數都是24的因數嗎?每排的人數呢?你是怎樣想的?

  五、課堂總結

  誰能說一說在這節(jié)課上你都知道了哪些有關倍數和因數的知識?

因數和倍數教案15

  教學目標

  1、知識與技能

  掌握因數、倍數的概念,知道因數、倍數的相互依存關系。

  2、過程與方法

  通過自主探究,使學生學會用因數、倍數描述兩個數之間的關系。

  3、情感態(tài)度與價值觀

  使學生感悟到數學知識的內在聯(lián)系的邏輯之美。

  教學重難點

  教學重點

  掌握找一個數的因數、倍數的方法。

  教學難點

  能熟練地找一個數的因數和倍數。

  教學工具

  課件、投影

  教學過程

  一、遷移引入

  同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:佳爸是佳佳的爸爸,佳佳是佳爸的兒子。其實在我們的數學王國里,數與數回見也存在著這種相互依存的關系,請看大平米,認識這些嗎?(課件出示:0,1,2,3,4,5……)

  這些自然數。(課件去“0”)

  去0后這又是什么數?(非零自然數中。)這節(jié)課我們就在非零自然數中來研究數與數之間的這種相互依存的關系。

  板書:因數和倍數

  二、情境創(chuàng)設,探究新知

  1、理解整除的意義。

  (1)出示例1,在前面學習中,我們見過下面的算式。

  12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8

  26÷8=3.25 20÷10=2 21÷21=1 63÷9=7

  你能把這些算式分類嗎?

  (2)分類所得:

  第

  一

  類

  12÷2=6 20÷10=2

  30÷6=5 21÷21=1

  63÷9=7

  第

  二

  類

  8÷3=2……2 9÷5=1.8

  19÷7=2……5 26÷8=3.25

  (3)觀察發(fā)現(xiàn),合作交流。

  觀察算式,說一說誰是誰的倍數,誰是誰的約數。

  2、理解因數、倍數的意義。

  12÷2=6中,我們就說12是2的倍數,2是12的因數。12÷6=2,所以12是6的倍數,6是12的因數。由此可知:(在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的'因數。)

  3、總結歸納

  (1)在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。

  (2)因數與倍數是相互依存的關系。

  4、注意:

  為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括0)。

  5、做一做。

  下面的4組數中,誰是誰的因數?誰是誰的倍數?

  4和24 36÷13 75÷25 81÷9

  6、教學例2

  18的因數有哪幾個?

  18的因數有1、2、3、6、9、18。

  也可以這樣用圖表示。

  18的因數

  1,2,3,

  6,9,18

  30的因數有哪些?36呢?

  7、教學例3

  2的倍數有哪些?

  2的倍數有2、4、6、8……

  2的倍數

  2,4,6,

  8,10,12,

  14,……

  3的倍數有哪些?5呢?

  8、小組討論,歸納總結

  一個數的最小因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。

  一個數的因數的個數是有限的,一個數的倍數的個數是無限的。

  課后小結

  一個數的最小因數是有限的,其中最小的因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。

  一個數的因數的個數是有限的,最大的因數是它本身。一個數的倍數的個數是無限的。

  課后習題

  1、填空。

  (1)36是4的( )數。

  (2)5是25的( )。

  (3)2.5是0.5的( )倍。

  2、下面各組數中,有因數和倍數關系的有哪些?

  (1)18和3 (2)120和60 (3)45和15 (4)33和7

  3、24和35的因數都有哪些?

  板書

  一個數的最小因數是有限的,其中最小的因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。

  一個數的因數的個數是有限的,最大的因數是它本身。一個數的倍數的個數是無限的。