亚洲国产成人超福利久久精品,日韩中文字幕一在线,综合图片亚洲综合网站,亚洲欧美激情综合首页,在线看日韩,欧美xxxx性喷潮,91亚洲国产成人久久精品网站

二次函數(shù)的應用教案

時間:2025-02-24 07:58:45 教案 我要投稿
  • 相關推薦

二次函數(shù)的應用教案

  作為一名人民教師,很有必要精心設計一份教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么寫教案需要注意哪些問題呢?下面是小編整理的二次函數(shù)的應用教案,歡迎大家借鑒與參考,希望對大家有所幫助。

二次函數(shù)的應用教案

  目標設計

  1.知識與技能:通過本節(jié)學習,鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質,理解頂點與最值的關系,會用頂點的性質求解最值問題。

  能力訓練要求

  1、能夠分析實際問題中變量之間的二次函數(shù)關系,并運用二次函數(shù)的知識求出實際問題的最大(。┲蛋l(fā)展學生解決問題的能力,學會用建模的思想去解決其它和函數(shù)有關應用問題。

  2、通過觀察圖象,理解頂點的特殊性,會把實際問題中的最值轉化為二次函數(shù)的最值問題,通過動手動腦,提高分析解決問題的能力,并體會一般與特殊的關系,培養(yǎng)數(shù)形結合思想,函數(shù)思想。

  情感與價值觀要求

  1、在進行探索的活動過程中發(fā)展學生的探究意識,逐步養(yǎng)成合作交流的習慣。

  2、培養(yǎng)學生學以致用的習慣,體會體會數(shù)學在生活中廣泛的應用價值,激發(fā)學生學習數(shù)學的興趣、增強自信心。

  方法設計

  由于本節(jié)課是應用問題,重在通過學習總結解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學活動,解決問題以學生動手動腦探究為主,必要時加以小組合作討論,充分調動學生學習積極性和主動性,突出學生的主體地位,達到“不但使學生學會,而且使學生會學”的目的。為了提高課堂效率,展示學生的學習效果,適當?shù)剌o以電腦多媒體技術。

  教學過程

  導學提綱

  設計思路:最值問題又是生活中利用二次函數(shù)知識解決最常見、最有實際應用價值的問題之一,它生活背景豐富,學生比較感興趣,對九年級學生來說,在學習了一次函數(shù)和二次函數(shù)圖象與性質以后,對函數(shù)的思想已有初步認識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應用知識解決問題,而面積問題學生易于理解和接受,故而在這兒作此調整,為求解最大利潤等問題奠定基礎。從而進一步培養(yǎng)學生利用所學知識構建數(shù)學模型,解決實際問題的能力,這也符合新課標中知識與技能呈螺旋式上升的規(guī)律。目的在于讓學生通過掌握求面積最大這一類題,學會用建模的思想去解決其它和函數(shù)有關應用問題,此部分內容既是學習一次函數(shù)及其應用后的鞏固與延伸,又為高中乃至以后學習更多函數(shù)打下堅實的理論和思想方法基礎。

  (一)前情回顧:

  1.復習二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點坐標、對稱軸和最值

  2.求函數(shù)y=x2+2x-3的最值,求函數(shù)y=x2+2x-3的最值。(0≤x≤3)

  3、拋物線在什么位置取最值?

  (二)適當點撥,自主探究

  1.在創(chuàng)設情境中發(fā)現(xiàn)問題

  請你畫一個周長為40厘米的矩形,算算它的面積是多少?再和同學比比,發(fā)現(xiàn)了什么?誰的面積最大?

  2、在解決問題中找出方法

  某工廠為了存放材料,需要圍一個周長40米的矩形場地,問矩形的長和寬各取多少米,才能使存放場地的面積最大?

 。▎栴}設計思路:把前面矩形的周長40厘米改為40米,變成一個實際問題,目的在于讓學生體會其應用價值?我們要學有用的數(shù)學知識。學生在前面探究問題時,已經發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時學生可能會有困難,這時教師要引導學生關注哪兩個變量,就把其中的一個主要變量設為x,另一個設為y,其它變量用含x的代數(shù)式表示,找等量關系,建立函數(shù)模型,實際問題還要考慮定義域,畫圖象觀察最值點,這樣一步步突破難點,從而讓學生在不斷探究中悟出利用函數(shù)知識解決問題的一套思路和方法,而不是為了做題而做題,為以后的學習奠定思想方法基礎。)

  3、在鞏固與應用中提高技能

  例1:小明的家門前有一塊空地,空地外有一面長10米的圍墻,為了美化生活環(huán)境,小明的爸爸準備靠墻修建一個矩形花圃,他買回了32米長的不銹鋼管準備作為花圃的圍欄,花圃的寬AD究竟應為多少米才能使花圃的面積最大?

 。ㄔO計思路:例1的設計也是尋找了學生熟悉的家門口的生活背景,從知識的角度來看,求矩形面積也較容易,我在此設計了一個條件墻長10米來限制定義域,目的在于告訴學生一個道理,數(shù)學不能脫離生活實際,估計大部分學生在求解時還會在頂點處找最值,導致錯解,此時教師再提醒學生通過畫函數(shù)的圖象輔助觀察、理解最值的實際意義,體會頂點與端點的不同作用,加深對知識的理解,做到數(shù)與形的完美結合,通過此題的有意訓練,學生必然會對定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學生思維的嚴密性,又為今后能靈活地運用知識解決問題奠定了堅實的基礎。)

  解:設垂直于墻的邊AD=x米,則AB=(32-2x)米,設矩形面積為y米2,得到:

  Y=x(32-2x)=-2x2+32x

  [錯解]由頂點公式得:

  x=8米時,y最大=128米2

  而實際上定義域為11≤x<16,由圖象或增減性可知x=11米時,y最大=110米2

 。ㄔO計思路:例1的設計也是尋找了學生熟悉的家門口的生活背景,從知識的角度來看,求矩形面積也較容易,我在此設計了一個條件墻長10米來限制定義域,目的在于告訴學生一個道理,數(shù)學不能脫離生活實際,估計大部分學生在求解時還會在頂點處找最值,導致錯解,此時教師再提醒學生通過畫函數(shù)的圖象輔助觀察、理解最值的實際意義,體會頂點與端點的不同作用,加深對知識的理解,做到數(shù)與形的完美結合,通過此題的有意訓練,學生必然會對定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學生思維的嚴密性,又為今后能靈活地運用知識解決問題奠定了堅實的基礎。)

  (三)總結交流:

  (1)同學們經歷剛才的探究過程,想想解決此類問題的思路是什么?

  (2)在探究發(fā)現(xiàn)這些判定方法的過程中運用了什么樣的數(shù)學方法?

  (四)掌握應用:

  圖中窗戶邊框的上半部分是由四個全等扇形組成的半圓,下部分是矩形。如果制作一個窗戶邊框的材料總長為15米,那么如何設計這個窗戶邊框的尺寸,使透光面積最大(結果精確到0.01m2)?(設計思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學生有一個思考遞進的空間。)

  (五)我來試一試:

  如圖在Rt△ABC中,點P在斜邊AB上移動,PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:

 。1)何時矩形PMCN的面積最大,把最大面積是多少?

  (2)當AM平分∠CAB時,矩形PMCN的面積.

 。┲橇﹃J關:

  如圖,用長20cm的籬笆,一面靠墻圍成一個長方形的園子,怎樣圍才能使園子的面積最大?最大面積是多少?

  作業(yè):課本隨堂練習、習題1,2,3

  板書設計

  二次函數(shù)的應用??面積最大問題

  課后反思

  二次函數(shù)的應用本身是學習二次函數(shù)的圖象與性質后,檢驗學生應用所學知識解決實際問題能力的一個綜合考查。新課標中要求學生能通過對實際問題的情境的分析確定二次函數(shù)的表達式,體會其意義,能根據(jù)圖象的性質解決簡單的實際問題。本節(jié)課充分運用導學提綱,教師提前通過一系列問題串的設置,引導學生課前預習,在課堂上通過對一系列問題串的解決與交流,讓學生通過掌握求面積最大這一類題,學會用建模的思想去解決其它和函數(shù)有關應用問題。

  教材中設計先探索最大利潤問題,對九年級學生來說,在學習了一次函數(shù)和二次函數(shù)圖象與性質以后,對函數(shù)的思想已有初步認識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應用知識解決問題,而面積問題學生易于理解和接受,故而在這兒作此調整,為求解最大利潤等問題奠定基礎。從而進一步培養(yǎng)學生利用所學知識構建數(shù)學模型,解決實際問題的能力,這也符合新課標中知識與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當?shù)慕档土颂荻,讓學生思維有一個拓展的空間,也有收獲快樂和成就感。在訓練的過程中,通過學生的獨立思考與小組合作探究相結合,使學生的分析能力、表達能力及思維能力都得到訓練和提高。同時也注重對解題方法與解題模式的歸納與總結,并適當?shù)貪B透轉化、化歸、數(shù)形結合等數(shù)學思想方法。

【二次函數(shù)的應用教案】相關文章:

二次函數(shù)教案15篇09-06

二次函數(shù)的說課稿06-22

二次函數(shù)教學反思09-18

《二次函數(shù)》教學反思07-15

二次函數(shù)說課稿06-23

初三二次函數(shù)教學反思07-25

《用三種方式表示二次函數(shù)》教案10-17

數(shù)學二次函數(shù)教學反思09-23

二次函數(shù)的圖像和性質教學反思06-16